
N2OS
Software Development Kit

N2OS v24.3.1 — 2024-09-09

Legal notices Software Development Kit

Legal notices

Information about the Nozomi Networks copyright and use of third-party software in
the Nozomi Networks product suite.

Copyright
Copyright © 2013-2024, Nozomi Networks. All rights reserved. Nozomi Networks
believes the information it furnishes to be accurate and reliable. However, Nozomi
Networks assumes no responsibility for the use of this information, nor any
infringement of patents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent, copyright, or other
intellectual property right of Nozomi Networks except as specifically described by
applicable user licenses. Nozomi Networks reserves the right to change specifications
at any time without notice.

Third Party Software
Nozomi Networks uses third-party software, the usage of which is governed by the
applicable license agreements from each of the software vendors. Additional details
about used third-party software can be found at https://security.nozominetworks.com/
licenses.

2 n2os-sdk v24.3.1 2024-09-09

https://security.nozominetworks.com/licenses
https://security.nozominetworks.com/licenses

Software Development Kit Contents

Contents

Chapter 1. Scriptable protocols... 5

Architecture.. 7
Setup..9
Script parameters... 10
Writing a standalone scriptable protocol.. 13
Writing an extension scriptable protocol.. 19
API reference.. 24

Chapter 2. Scriptable variables...47

Setup...49
Writing a variables correlation script.. 50
API reference...53

Chapter 3. OpenAPI..55

OpenAPI..57
Setup...58
Errors...60
Query endpoint..61
CLI endpoint..63
Import CSV endpoint... 64
Import JSON endpoint.. 66
Alerts endpoint... 68
Trace endpoint...74
Users endpoint.. 77
PCAPs endpoint..83
Reports endpoint...89
Report templates endpoint..93
Quarantine endpoint...95
Threat intelligence.. 96
Sensors endpoint...98
Throttling policy..100

Chapter 4. Data model reference...101

alerts.. 103
appliances... 106
assertions...108
assets.. 109
asset_cves...111
captured_logs...113
captured_urls..114
function_codes.. 115

n2os-sdk v24.3.1 2024-09-09 3

Contents Software Development Kit

health_log... 116
link_events..117
links... 118
node_cpe_changes... 121
node_cpes.. 123
node_cves...125
node_points.. 127
nodes...128
report_files... 133
sessions_history... 134
sessions..136
variable_history.. 138
variables...139

Chapter 5. Data integration best practices..141

OpenAPI data... 143
Certify your integration with Nozomi Networks.. 147

Glossary.. 149

4 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

Chapter 1. Scriptable protocols

n2os-sdk v24.3.1 2024-09-09 5

1 - Scriptable protocols Software Development Kit

6 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

Architecture

With scriptable protocols, it is possible to add new detection capabilities in Guardian.
These protocols are implemented using the Lua scripting language and have access
to most of the hardcoded traffic inspection and detection functionality via a dedicated
application programming interface (API).

There are two different kinds of scriptable protocols, differing on the way they are
invoked in the traffic processing pipeline:

• Standalone protocols
• Extensions

Standalone protocols
Standalone protocols handle transmission control protocol (TCP) / UDP traffic in an
exclusive way: when a session is deemed to be handled by a standalone protocol then
all packets belonging to it will be handled by this protocol and no other standalone
protocol (hardcoded or not) will be involved. With standalone scriptable protocols,
it is possible to implement a completely new protocol that currently doesn't have a
dedicated handler in Guardian.

Standalone protocols are identified by their name and when instantiated they are
inserted to the list of possible packet handlers in the packet pipeline. When offered a
packet they have the opportunity to declare themselves (via the can_handle function)
as handlers of the session. If a positive response is provided, then this packet as well
as all subsequent packets in the session are classified as being handled by the specific
protocol and will all be offered for processing to the update_status callback.

Another possibility with standalone scriptable protocols is to override existing
hardcoded implementations of a protocol. In such a case, the name of the scriptable
protocol should be the same as the one to be overridden. This possibility should be
used only in extraordinary circumstances: hardcoded protocols offer rich handling and
it is going to be challenging to offer equivalent handling via Lua scripting.

Standalone protocols get to handle raw packets as they are captured by the network
interface. For this reason, any kind of message delineation / defragmentation will need
to be done by the scriptable protocol itself.

Extensions
Extensions are scriptable protocols that add detection capabilities on top of existing
(hardcoded or not) standalone protocols. There is no need to completely handle the
traffic of a specific protocol (this is done by the standalone protocol being extended),
but instead to implement the additional detection capabilities requested.

Extension protocols are identified by the protocol being extended and their name.
Their identification string is constructed by concatenating the name of the standalone
protocol being extended, with the name of the extension protocol using the hash
character as separator. For example, the extension protocol token_detector that is
extending the http protocol will use http#token_detector for its identification.

n2os-sdk v24.3.1 2024-09-09 7

1 - Scriptable protocols Software Development Kit

Extension scriptable protocols are offered packets that have been accepted and
handled by the base standalone protocol. Accordingly, their can_handle function
needs to check only if the extension should handle a specific packet of the base
protocol (and not do thorough checking if the packet is indeed a base protocol one).
Also, if there is any message delineation / defragmentation done for the protocol, this
will already been done by the base protocol: the extensions will get to handle complete,
reconstructed messages.

Safe restarts
The activation of a scriptable protocol is an operation that carries some risk: since new
traffic handling components are being added in the packet processing pipeline, it is
possible that the characteristics of the system are adversely affected, or even worse
that restarts are triggered. Care has been taken to protect the system from errors
happening during script execution, but it is still possible to eventually have system
disturbances.

As a safety net against such occurrences, the safe restarts detection feature has been
implemented. According to it, if Guardian is doing non graceful restarts too frequently
(by default if more than 3 times in the last 15 minutes), then the system switches into
safe restart mode. In this mode, no scriptable protocol gets activated (the user gets
informed about it in the log file).

8 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

Setup

Do this procedure to add a new scriptable protocol.

To add a new scriptable protocol there are two options:

1. Explicit configuration
2. Handle as custom user contents

Explicit configuration

1. Copy the Lua script in /data/scriptable_protocols/
2. Configure Guardian with this rule conf.user configure probe scriptable-
protocol <protocol_name> <script_name> in command-line interface
(CLI)(<script_name> is the name of the file including the extension)

3. There is no need to restart the intrusion detection system (IDS) after the
scriptable protocol configuration: the system will automatically activate it
(alongside any other scriptable protocols already configured)

Custom user contents

1. Make sure that the scriptable protocol parameters (most importantly, the name)
have been set via comments in the script body.

2. Add the .content extension to the script file name.
3. Copy the Lua script in /data/contents/scriptable_protocols/
4. Notify IDS that the scriptable protocols contents have changed by issuing in the

CLI: ids contents_reload {"content_type": "scriptable_protocols"}
5. There is no need to restart the IDS, the system will automatically activate all

scriptable protocols delivered as contents, together with all those that have been
explicitly configured.

After these steps the new protocol is loaded in Guardian and will analyze the network
traffic.

n2os-sdk v24.3.1 2024-09-09 9

1 - Scriptable protocols Software Development Kit

Script parameters

Apart from the Lua script that provides the implementation of a scriptable protocol,
there are a number of parameters that are configurable via different means. These
parameters affect diverse aspects of a scriptable protocol such as which protocol it
extends and which Guardian versions it is applicable to. Scriptable protocol parameters
can be configured in two ways:

1. JavaScript Object Notation (JSON) object at the end of the conf.user
configure probe scriptable-protocol configuration line

2. Special Lua comments (--nn-) embedded within the Lua script

Configuration line
After the mandatory <protocol_name> and <script_name> arguments in the
probe scriptable-protocol configuration line, a JSON object may optionally be
provided. This object shall hold the keys / values for all the parameters that need to
be configured. For example, if a scriptable protocol is to be allowed to be executed
concurrently, then the multithreaded parameter needs to be set to true:

conf.user configure probe scriptable-protocol fast_protocol script.lua

 { "multithreaded": true }

Embedded as script comments
When a scriptable protocol is not to be loaded via explicit configuration, but
as custom user contents (i.e. by storing as .content file in /data/contents/
scriptable_protocols), all parameters are provided as special Lua comments at
the top of the file. These comments have the --nn- prefix followed by the parameter
key and value, separated by the colon (:) character. Using the same example as
above, if a scriptable protocol is to be allowed to be executed concurrently, then the
multithreaded parameter shall be set to true by adding as comment in the script file
the line:

--nn- multithreaded: true

Note that when a scriptable protocol is loaded via an explicit configuration line, then
the parameters provided as comments within the file are ignored: only those explicitly
provided in the configuration line (as JSON object) are going to be used.

Supported parameters
Name (name)

The name parameter provides the string which is going to used for identifying the
scriptable protocol within the system. If the scriptable protocol is a standalone one,
then the Protocol identifier (ID) shall consist of the name string only. If the protocol
is an extension, then the Protocol ID shall be created by combining the name and
extends_protocol parameters.

The name parameter must be provided (as a script comment) when the scriptable
protocol is to be loaded as custom user content.

Example:

10 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

--nn- name: some_scada_prot

Extends protocol (extends_protocol)

The extends_protocol parameter provides the name of the standalone protocol to
be extended, effectively marking the scriptable protocol as an extension. In such a
scenario, the scriptable protocol shall be identified in the system by concatenating the
extends_protocol and name parameters, using the hash (#) as separator.

For example, if the scriptable protocol is an hypertext transfer protocol (HTTP)
extension that e.g. detects invalid tokens then the following script comments could be
set:

--nn- name: invalid_token_detector

--nn- extends_protocol: http

If this scriptable protocol is to be explicitly configured, then the following configuration
line should be used:

conf.user configure probe scriptable-protocol invalid_token_detector

 script.lua { "extends_protocol": "http" }

Multithreaded (multithreaded)

The multithreaded parameter dictates whether the scriptable protocol should be
allowed to be executed concurrently. If set to true, then the script will be instantiated
multiple times and each packet processing thread shall always use one of them. In
such a scenario, there is no shared Lua state between the different instances and thus
persistent variables written by one instance will not have their values visible by other
instances.

The default value for this parameter is false

Examples:

--nn- multithreaded: true

conf.user configure probe scriptable-protocol prot_name script.lua

 { "multithreaded": true }

N2OS Version (n2os_version)

The n2os_version parameter allow scriptable protocols to be conditionally loaded,
based on the version of the currently running IDS. This is useful when the same script
is to be distributed to Guardians on different software levels and the script is applicable
only to some of them.

The value of this parameter consists of comma separated version specifiers. Each
version specifier consists of an operator and a version literal. For example. the version
specifier >= 20.0.0 would be satisfied by all versions that are greater or equal to
20.0.0. If multiple version specifiers are provided, then they must be all satisfied for the
scriptable protocol to be loaded. For example, if the n2os_version parameter is set
to >= 20.0.0, != 21.0.0, then the scriptable protocol would be loaded for versions
20.0.0 and 22.0.0, but not for 19.0.0 or 21.0.0.

The operators that are supported are:

n2os-sdk v24.3.1 2024-09-09 11

1 - Scriptable protocols Software Development Kit

1. ==: Equal
2. !=: Not equal
3. >: Greater
4. >=: Greater or equal
5. <=: Less or equal
6. <: Less

For example, if this scriptable protocol is to be loaded for versions that are greater or
equal to 20.0.0, but not equal to 21.0.0, then the following comment should be added to
the script:

--nn- n2os_version: >= 20.0.0, != 21.0.0

If the configuration is to be explicit, then the following JSON object should be provided:

conf.user configure probe scriptable-protocol prot_name script.lua

 { "n2os_version": ">= 20.0.0, != 21.0.0" }

This parameter can be provided multiple times, if there are multiple disjoint version
sets that could be satisfied. In such a case, the scriptable protocol will be loaded if any
of the provided parameter values is satisfied.

For example, if a scriptable protocol should be loaded on any version belonging to the
releases with major version 20 or 22, then the following comments should be set in the
script:

--nn- n2os_version: >= 20.0.0, < 21.0.0

--nn- n2os_version: >= 22.0.0, < 23.0.0

If the script is going to be loaded via explicit configuration line, then the following JSON
object should be provided:

conf.user configure probe scriptable-protocol prot_name script.lua

 { "n2os_version": [">= 20.0.0, < 21.0.0", ">= 22.0.0, < 23.0.0"] }

12 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

Writing a standalone scriptable protocol

The language used to write a scriptable protocol is Lua, please refer to the official Lua
documentation (https://www.lua.org/start.html) to learn more.

This is a minimal protocol implementation:

function can_handle()

 return true

end

From the example we can see that the only mandatory thing to do is to define a
function called can_handle which returns true if it recognize the target protocol.

Of course this implementation is not very useful and it will try to handle every packet so
let's write something more complex to detect and analyze some modbus traffic:

function can_handle()

 return packet.source_port() == 502 or packet.destination_port() == 502

end

Here we can see a usage of the API to retrieve the packet ports. In this way the check is
a bit more accurate but it's still insufficient to detect a modbus packet in the real world.

Let's start to do some deep packet inspection:

function can_handle()

 if data_size() < 8 then

 return false

 end

 local has_right_port = packet.source_port() == 502 or

 packet.destination_port() == 502

 fwd(2)

 local has_right_protocol_id = consume_n_uint16() == 0

 local expected_length = consume_n_uint16()

 return has_right_port and

 has_right_protocol_id and

 remaining_size() == expected_length

end

WARNING: don't use global variables. Variables defined outside of the can_handle and
update_status functions are global and their status is shared across every session of
the same protocol.

NOTE: the fwd and consume_* functions will move forward the payload pointer.

n2os-sdk v24.3.1 2024-09-09 13

1 - Scriptable protocols Software Development Kit

NOTE: the result of the remaining_size function depends on the position of the
payload pointer.

In this example we use the API to inspect the content of the payload. First we check
that there are enough bytes, a modbus packet is at least 8 bytes long. Then we check
the port in the same way we did in the previous example, then we skip two bytes with
the function fwd and we read the next two 16 bit integers. We check that the protocol
id is zero and that the length written in the packet matches the remaining bytes count
in our payload. If every check succeeds true is returned, informing Guardian that the
next packets in this session should be analyzed by this protocol decoder.

A protocol with just the can_handle function implemented will only create the node
and the session in the Network but the link is still missing from the graph, no additional
information will be displayed in the Process information.

To extract more information from the modbus packets we are going to implement the
update_status function:

function get_protocol_type()

 return ProtocolType.SCADA

end

function can_handle()

 return is_modbus()

end

function update_status()

 if not is_modbus() then

 return

 end

 local is_request = packet.destination_port() == 502

 local rtu_id = consume_uint8()

 local fc = consume_uint8() & 0x7f

 if is_request then

 is_packet_from_src_to_dst(true)

 set_roles("consumer", "producer")

 if fc == 6 then

 local address = consume_n_uint16()

 local value = DataValue.new()

 value.value = read_n_uint16()

14 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

 value.cause = DataCause.WRITE

 value.type = DataType.ANALOG

 value.time = packet.time()

 execute_update_with_variable(FunctionCode.new(fc),

 RtuId.new(rtu_id), "r"..tostring(address), value)

 return

 end

 end

 execute_update()

end

Note:

To avoid duplication we created a is_modbus function from the content of the

previous can_handle function.

Note:

The is_modbus function has the effect to advance the payload pointer by 6

bytes, so we can directly read the rtu_id without further payload pointer

manipulations.

Note:

We defined the get_protocol_type function to define the protocol type.

In this example of update_status we read more data from the payload and we
decode the write single register request. We can understand the direction of the
communication so we call is_packet_from_src_to_dst with true to notify Guardian
and create a link and we call set_roles to set the roles on the involved nodes.

To insert a variable in Guardian there is the execute_update_with_variable function,
it takes 4 arguments: the function code, the rtu id, the variable name and the value.
The FunctionCode and RtuId objects can be constructed from a string or a number,
the DataValue object can be constructed with the empty constructor and then filled
with the available information.

With the next example we cover a more complex case and we store some data in the
session to handle a request and a response:

local PENDING_FC = 1

local PENDING_START_ADDR = 2

local PENDING_REG_COUNT = 3

n2os-sdk v24.3.1 2024-09-09 15

1 - Scriptable protocols Software Development Kit

function update_status()

 if not is_modbus() then

 return

 end

 rwd()

 local is_request = packet.destination_port() == 502

 local transaction_id = consume_n_uint16()

 fwd(4)

 local rtu_id = consume_uint8()

 local fc = consume_uint8() & 0x7f

 if is_request then

 is_packet_from_src_to_dst(true)

 set_roles("consumer", "producer")

 session.set_pending_request_number(transaction_id, PENDING_FC, fc)

 if fc == 3 then

 if remaining_size() < 4 then

 return

 end

 local start_addr = consume_n_uint16()

 local registers_count = consume_n_uint16()

 session.set_pending_request_number(transaction_id,

 PENDING_START_ADDR, start_addr)

 session.set_pending_request_number(transaction_id,

 PENDING_REG_COUNT, registers_count)

 end

 else

 is_packet_from_src_to_dst(false)

 local req_fc = session.read_pending_request_number(transaction_id,

 PENDING_FC)

16 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

 if fc == req_fc then

 if fc == 3 then

 local start_addr =

 session.read_pending_request_number(transaction_id, PENDING_START_ADDR)

 local reg_count =

 session.read_pending_request_number(transaction_id, PENDING_REG_COUNT)

 session.close_pending_request(transaction_id)

 if remaining_size() < 1 then

 return

 end

 local byte_count = consume_uint8()

 if remaining_size() ~= byte_count or

 reg_count * 2 ~= remaining_size() then

 send_alert_malformed_packet("Packet is too small")

 return

 end

 for i = 0, reg_count - 1, 1 do

 local value = DataValue.new()

 value.value = consume_n_uint16()

 value.cause = DataCause.READ_SCAN

 value.type = DataType.ANALOG

 value.time = packet.time()

 execute_update_with_variable(FunctionCode.new(fc),

 RtuId.new(rtu_id),

 "r"..tostring(start_addr+i),

 value)

 end

 return

 end

 end

 end

n2os-sdk v24.3.1 2024-09-09 17

1 - Scriptable protocols Software Development Kit

 execute_update()

end

This time we are focusing on the read holding register function code, to understand
the communication and create a variable we need to analyze both the request and the
response and we need to keep some data from the request and use it in the response.
To achieve this we can use the functions provided by the session object.

18 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

Writing an extension scriptable protocol

In this section, an extension scriptable protocol is to be developed, which will add some
additional detection capability for HTTP traffic. Specifically, the script tag contents in
POST requests will be correlated to some text in the response. If data are found in both
request and response, then a property combining these two will be set in the client
node.

Since we are authoring an HTTP extension, it is known beforehand that only HTTP
traffic will be offered for processing. The can_handle can be trivial since it is desired
that all HTTP traffic passes through the extension:

function can_handle()

 return true

end

In the update_status function, the extension functionality is to be implemented:

function update_status()

 msg = read_string()

 if is_post(msg) then

 handle_post(msg)

 elseif is_response(msg) then

 handle_response(msg)

 end

end

From all the functions that are invoked in it, only read_string is provided by the
Guardian API, the other ones are defined within the scriptable protocol script and will
be provided later on.

In this function, the complete HTTP message is read (reminder that extensions get to
handle defragmented data) and then based on checks if this is a POST or a response
message the appropriate functions are invoked.

The functions that support the handling of the POST messages are:

PENDING_SCRIPT_KEY = 0

function is_post(msg)

 req_pattern = "^POST"

 index, _ = string.find(msg, req_pattern)

 return index ~= nil

end

n2os-sdk v24.3.1 2024-09-09 19

1 - Scriptable protocols Software Development Kit

function parse_script(msg)

 pattern = "<script>(.*)</script>"

 _, _, script = string.find(msg, pattern)

 return script

end

function handle_post(msg)

 script = parse_script(msg)

 if script then

 session.set_pending_request_string(0, PENDING_SCRIPT_KEY, script)

 end

end

The is_post function checks whether the HTTP message starts with the POST string.
If the index returned by the string.find Lua function is not nil, then the true is
returned (the ^ anchor makes sure that a match will only be made at the beginning of
the string).

The parse_script function again uses the Lua string.find function to check for the
script contents, this time returning the captured text in parentheses. If no match
could be found, then nil will be returned.

The handle_post function again searches for the script contents and if
found it stores it in the session, under the PENDING_SCRIPT_KEY key. The
session.set_pending_request_string function is part of the Guardian specific API
and stores an arbitrary string in the session. The first argument is the request_id
and since in the case of HTTP we don't expect to have multiplexed request / response
pairs in the same session, it is set to a hardcoded 0. The second argument is used to
discriminate between different data values stored for the same request, it is set here
again to 0.

Thus at the end of the POST handling functions, a pending request string may be set on
the session which will hold the contents of the script tag.

The response handling functions are:

function is_response(msg)

 res_pattern = "^HTTP"

 index, _ = string.find(msg, res_pattern)

 return index ~= nil

end

function parse_p(msg)

 pattern = "<p>(.*)</p>"

 _, _, p_body = string.find(msg, pattern)

 return p_body

end

20 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

function handle_response(msg)

 if session.has_pending_request_value(0, PENDING_SCRIPT_KEY) then

 p_body = parse_p(msg)

 if p_body then

 pending_script = session.read_pending_request_string(0,

 PENDING_SCRIPT_KEY)

 restored_value = pending_script .. " -- " .. p_body

 packet.destination_node():set_property("restored_value",

 restored_value)

 end

 session.close_pending_request(0)

 end

end

The is_response and parse_p functions are very similar to those that were described
for the POST side handling, so they will not be commented further. Instead, the focus
will be in the more interesting handle_response one.

For the response handling, the script first checks if the script key has already been
stored in the session (when a POST message was handled). Note how in order to access
the correct placeholder in the session, the session.has_pending_request_value
function has been invoked with the same arguments as when the value was stored
in the session. If the script value has been found in the session then the body of the
p tag is searched for and if that one is found as well, then the script value is fetched
from the session (session.read_pending_request_string) and gets concatenated
with the body of the p tag. The resulting string is stored as a property in the destination
node (packet.destination_node():set_property). At the end, the data stored in the
session are cleared session.close_pending_request since they are no longer needed
and would otherwise consume memory unnecessarily.

In the code block below, the complete script is provided:

function can_handle()

 return true

end

PENDING_SCRIPT_KEY = 0

function parse_script(msg)

 pattern = "<script>(.*)</script>"

 _, _, script = string.find(msg, pattern)

 return script

end

n2os-sdk v24.3.1 2024-09-09 21

1 - Scriptable protocols Software Development Kit

function parse_p(msg)

 pattern = "<p>(.*)</p>"

 _, _, p_body = string.find(msg, pattern)

 return p_body

end

function is_post(msg)

 req_pattern = "^POST"

 index, _ = string.find(msg, req_pattern)

 return index ~= nil

end

function is_response(msg)

 res_pattern = "^HTTP"

 index, _ = string.find(msg, res_pattern)

 return index ~= nil

end

function handle_post(msg)

 script = parse_script(msg)

 if script then

 session.set_pending_request_string(0, PENDING_SCRIPT_KEY, script)

 end

end

function handle_response(msg)

 if session.has_pending_request_value(0, PENDING_SCRIPT_KEY) then

 p_body = parse_p(msg)

 if p_body then

 pending_script = session.read_pending_request_string(0,

 PENDING_SCRIPT_KEY)

 restored_value = pending_script .. " -- " .. p_body

 packet.destination_node():set_property("restored_value",

 restored_value)

 end

 session.close_pending_request(0)

 end

22 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

end

function update_status()

 msg = read_string()

 if is_post(msg) then

 handle_post(msg)

 elseif is_response(msg) then

 handle_response(msg)

 end

end

n2os-sdk v24.3.1 2024-09-09 23

1 - Scriptable protocols Software Development Kit

API reference

Available Lua libraries
• base

• string

• table

• math

• debug

• utf8

Data types

Class FieldInfoAttributes

Constructors • FieldInfoAttributes.new()

Read/write

properties
• FieldInfoAttributes.source_code (FieldSourceCode)

• FieldInfoAttributes.granularity (FieldGranularity)

• FieldInfoAttributes.confidence (FieldConfidence)

Class FunctionCode

Constructors • FunctionCode.new(<string>)

• FunctionCode.new(<number>)

Class RtuId

Constructors • RtuId.new(<string>)

• RtuId.new(<number>)

Class DataValue

Constructors • DataValue.new()

Read/write

properties
• DataValue.value (number)

• DataValue.str_value (string)

• DataValue.cause (DataCause)

• DataValue.time (number, milliseconds since epoch)

• DataValue.type (DataType)

Class Variable

24 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

Methods • set_label(<string>)

Class Node

Methods • set_property(<key>, <value>)

• get_property(<key>)

• delete_property(<key>)

• set_label(<label>)

• set_vendor(<string>, <FieldInfoAttributes>)

• set_product_name(<string>, <FieldInfoAttributes>)

• set_firmware_version(<string>, <FieldInfoAttributes>)

• set_serial_number(<string>, <FieldInfoAttributes>)

• notify_vulnass()

◦ notifies the vulnass process to create a Common Platform
Enumeration (CPE)

Enum DataCause

Values • DataCause.READ_SCAN

• DataCause.READ_CYCLIC

• DataCause.READ_EVENT

• DataCause.WRITE

Enum DataType

n2os-sdk v24.3.1 2024-09-09 25

1 - Scriptable protocols Software Development Kit

Values • DataType.ANALOG

◦ the Analog type represents a floating point number

• DataType.DIGITAL

◦ the Digital type represents a boolean type and can be either
0 or 1

• DataType.BITSTRING

◦ the Bitstring type represents a raw value in the form of a
sequence of 0 and 1, e.g. "00101110"

• DataType.STRING

◦ the String type represents a value in the form of a sequence
of printable characters

• DataType.DOUBLEPOINT

◦ the Double Point type represents a boolean value with an
additional degree of redundancy. It is commonly used in
protocols such as DNP3, IEC 104 or IEC 61850

• DataType.TIMESTAMP

◦ the Timestamp type represents a point in time in the format
of milliseconds from the epoch

Note:

Only ANALOG, DIGITAL and DOUBLEPOINT types are kept in

consideration by the Process Learning Engine when detecting

deviations from the baseline.

Enum FieldConfidence

Values • FieldConfidence.MANUAL_OR_IMPORT

• FieldConfidence.HIGH

• FieldConfidence.GOOD

• FieldConfidence.LOW

• FieldConfidence.UNKNOWN

• FieldConfidence.UNSUPPORTED

Enum FieldGranularity

Values • FieldGranularity.MANUAL_OR_IMPORT

• FieldGranularity.COMPLETE

• FieldGranularity.PARTIAL

• FieldGranularity.GENERIC

• FieldGranularity.UNKNOWN

• FieldGranularity.UNSUPPORTED

26 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

Enum FieldSourceCode

Values • FieldSourceCode.NONE

• FieldSourceCode.ENRICHMENT

• FieldSourceCode.PASSIVE

• FieldSourceCode.DATA_INTEGRATION

• FieldSourceCode.SMART_POLLING

• FieldSourceCode.ARC

• FieldSourceCode.ASSET_KB

• FieldSourceCode.IMPORT

• FieldSourceCode.MANUAL

• FieldSourceCode.OVERWRITE

Enum ProtocolType

Values • ProtocolType.SCADA

• ProtocolType.NETWORK

• ProtocolType.IoT

Functions

Syntax data(<index>)

Parameters • index: the position of the byte to read, starting from 0

Description Return the value of the byte from the specified position, return 0 if index is

out of bounds

Syntax data_size()

Description Return the total size of the payload

Syntax remaining_size()

Description Return the size of the payload from the pointer to the end. The result

depends on the usage of functions fwd(), rwd() and consume_*().

Syntax fwd(<amount>)

Parameters • amount: the number of bytes to skip

Description Move the payload pointer by the specified number of bytes.

n2os-sdk v24.3.1 2024-09-09 27

1 - Scriptable protocols Software Development Kit

Syntax rwd()

Description Move the payload pointer to the beginning of the payload.

Syntax read_uint8()

Description Read an unsigned 8bit integer at the payload pointer position.

Syntax read_int8()

Description Read an signed 8bit integer at the payload pointer position.

Syntax read_n_uint16()

Description Read a network order unsigned 16bit integer at the payload pointer

position.

Syntax read_h_uint16()

Description Read a host order unsigned 16bit integer at the payload pointer position.

Syntax read_n_int16()

Description Read a network order signed 16bit integer at the payload pointer position.

Syntax read_h_int16()

Description Read a host order signed 16bit integer at the payload pointer position.

Syntax read_n_uint32()

Description Read a network order unsigned 32bit integer at the payload pointer

position.

Syntax read_h_uint32()

Description Read a host order unsigned 32bit integer at the payload pointer position.

Syntax read_n_int32()

Description Read a network order signed 32bit integer at the payload pointer position.

Syntax read_h_int32()

28 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

Description Read a host order signed 32bit integer at the payload pointer position.

Syntax read_n_uint64()

Description Read a network order unsigned 64bit integer at the payload pointer

position.

Syntax read_h_uint64()

Description Read a host order unsigned 64bit integer at the payload pointer position.

Syntax read_n_int64()

Description Read a network order signed 64bit integer at the payload pointer position.

Syntax read_h_int64()

Description Read a host order signed 64bit integer at the payload pointer position.

Syntax read_n_float()

Description Read a network order float at the payload pointer position.

Syntax read_h_float()

Description Read a host order float at the payload pointer position.

Syntax read_n_double()

Description Read a network order double at the payload pointer position.

Syntax read_h_double()

Description Read a host order double at the payload pointer position.

Syntax read_string()

Description Read a string at the payload pointer position until the null terminator.

Syntax read_string_with_len(str_len)

Description Read a string at the payload pointer position for str_len bytes.

n2os-sdk v24.3.1 2024-09-09 29

1 - Scriptable protocols Software Development Kit

Syntax consume_uint8()

Description Read an unsigned 8bit integer at the payload pointer position and move

the pointer after the data.

Syntax consume_int8()

Description Read an signed 8bit integer at the payload pointer position and move the

pointer after the data.

Syntax consume_n_uint16()

Description Read a network order unsigned 16bit integer at the payload pointer

position and move the pointer after the data.

Syntax consume_h_uint16()

Description Read a host order unsigned 16bit integer at the payload pointer position

and move the pointer after the data.

Syntax consume_n_int16()

Description Read a network order signed 16bit integer at the payload pointer position

and move the pointer after the data.

Syntax consume_h_int16()

Description Read a host order signed 16bit integer at the payload pointer position and

move the pointer after the data.

Syntax consume_n_uint32()

Description Read a network order unsigned 32bit integer at the payload pointer

position and move the pointer after the data.

Syntax consume_h_uint32()

Description Read a host order unsigned 32bit integer at the payload pointer position

and move the pointer after the data.

Syntax consume_n_int32()

30 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

Description Read a network order signed 32bit integer at the payload pointer position

and move the pointer after the data.

Syntax consume_h_int32()

Description Read a host order signed 32bit integer at the payload pointer position and

move the pointer after the data.

Syntax consume_n_uint64()

Description Read a network order unsigned 64bit integer at the payload pointer

position and move the pointer after the data.

Syntax consume_h_uint64()

Description Read a host order unsigned 64bit integer at the payload pointer position

and move the pointer after the data.

Syntax consume_n_int64()

Description Read a network order signed 64bit integer at the payload pointer position

and move the pointer after the data.

Syntax consume_h_int64()

Description Read a host order signed 64bit integer at the payload pointer position and

move the pointer after the data.

Syntax consume_n_float()

Description Read a network order float at the payload pointer position and move the

pointer after the data.

Syntax consume_h_float()

Description Read a host order float at the payload pointer position and move the

pointer after the data.

Syntax consume_n_double()

Description Read a network order double at the payload pointer position and move

the pointer after the data.

n2os-sdk v24.3.1 2024-09-09 31

1 - Scriptable protocols Software Development Kit

Syntax consume_h_double()

Description Read a host order double at the payload pointer position and move the

pointer after the data.

Syntax consume_string()

Description Read a string at the payload pointer position until the null terminator and

move the pointer after the data.

Syntax consume_string_with_len(str_len)

Description Read a string at the payload pointer position for str_len bytes and move

the pointer after the data.

Syntax consume_xor_data(bytes_len, key, callback_function)

Description Read bytes_len bytes at the payload pointer position and apply the XOR

function with the byte in key at the same index. callback_function

is then invoked with the payload pointer changed to the trasformed

payload. When exiting from the callback function, the previous context is

restored and the pointer is moved after the data.

Note:

key: must be an array of hex integers with a length greater or

equal than bytes_len.

Syntax consume_gzip_data(bytes_len, callback_function)

Description Read bytes_len bytes at the payload pointer position and decompress it

with gzip. callback_function is then invoked with the payload pointer

changed to the decompressed payload. When exiting from the callback

function, the previous context is restored and the pointer is moved after

the data.

Syntax consume_zlib_data(bytes_len, callback_function)

Description Read bytes_len bytes at the payload pointer position and decompress

it with zlib. callback_function is then invoked with the payload pointer

changed to the decompressed payload. When exiting from the callback

function, the previous context is restored and the pointer is moved after

the data.

32 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

Syntax compute_crc16(size, poly, init, xor_out, ref_in, ref_out)

Parameters • size: the amount of bytes on which the CRC is computed
• poly, init, xor_out, ref_in, ref_out: the common CRC input

parameters

Description Compute the CRC16 of the remaining payload according to the input

parameters. The input parameters for CRC functions can be easily found

online. For example, to get a CRC16/DNP the parameters are: 0x3D65,

0x0000, 0xFFFF, true, true

Syntax compute_crc32(size, poly, init, xor_out, ref_in, ref_out)

Parameters • size: the amount of bytes on which the CRC is computed
• poly, init, xor_out, ref_in, ref_out: the common CRC input

parameters

Description Compute the CRC32 of the remaining payload according to the input

parameters. The input parameters for CRC functions can be easily found

online. For example, to get a plain CRC32 the parameters are: 0x04C11DB7,

0xFFFFFFFF, 0xFFFFFFFF, true, true

Syntax set_roles(<client_role>, <server_role>)

Parameters • client_role: the role of the client
• server_role: the role of the server

Description Set the roles of the involved nodes, valid values are: "consumer",

"producer", "historian", "terminal", "web_server", "dns_server", "db_server",

"time_server", "other"

Syntax set_source_type(<node_type>)

Parameters • node_type: the type of the source node

Description Set the type of the source node, valid values are: "switch", "router", "printer",

"group", "OT_device", "broadcast", "computer"

Syntax variables_are_on_client()

Parameters

Description Notify to Guardian that the variables should be added to the client node

n2os-sdk v24.3.1 2024-09-09 33

1 - Scriptable protocols Software Development Kit

syntax is_packet_from_src_to_dst(<is_from_src>)

parameters • is_from_src: true is the direction is from src to dst, false otherwise

description notify Guardian about the direction of the packet, this function must be

called to obtain a link creation

syntax execute_update()

parameters

description notify Guardian about the a packet, at least one variant of execute_update

should be called for every packet (available for standalone protocols only)

syntax execute_update_with_function_code(<function_code>, <rtu id>)

parameters • function_code: an object of type functioncode
• rtuid: an object of type rtuid

description notify Guardian about the a packet with a function code and a rtu id

(available for standalone protocols only)

syntax execute_update_with_variable(<function_code>, <rtu id>,

<var_name>, <value>)

parameters • function_code: an object of type functioncode
• rtu_id: an object of type rtuid
• var_name: the name of the variable
• value: an object of type datavalue containing the value of the

variable and some information about the data

description notify Guardian about the a packet with a function code, a rtu id, a

variable name and a variable value (available for standalone protocols

only)

syntax execute_update_with_function(<function_code>, <rtu id>,

<var_name>, <value>, <function>)

34 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

parameters • function_code: an object of type functioncode
• rtu_id: an object of type rtuid
• var_name: the name of the variable
• value: an object of type datavalue containing the value of the

variable and some information about the data
• function: the function will be called passing variable as an

argument

description notify Guardian about the a packet with a function code, a rtu id, a

variable name, a variable value and a function that give the possibility to

directly access the variable (available for standalone protocols only)

syntax set_fc_info(<fc_num>, <fc_descr>)

parameters • fc_num: the function code as a number
• fc_descr: description of the function code

description establish a correspondence between a function code number and its

description. When Guardian is later notified about this function code

numerically, then the description will automatically be recalled and used

syntax AlertFactory.new_net_device()

description raise an alert of type VI:NEW-NET-DEV

syntax AlertFactory.firmware_transfer()

description raise an alert of type SIGN:FIRMWARE-TRANSFER

syntax AlertFactory.protocol_error(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:PROTOCOL-ERROR

syntax AlertFactory.wrong_time(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type PROC:WRONG-TIME

syntax AlertFactory.sync_asked_again(<reason>)

n2os-sdk v24.3.1 2024-09-09 35

1 - Scriptable protocols Software Development Kit

parameters • reason: a message to be displayed in the alert

description raise an alert of type PROC:SYNC-ASKED-AGAIN

syntax AlertFactory.protocol_flow_anomaly(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type VI:PROC:PROTOCOL-FLOW-ANOMALY

syntax AlertFactory.variable_flow_anomaly(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type VI:PROC:VARIABLE-FLOW-ANOMALY

syntax AlertFactory.dhcp_request(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:DHCP-OPERATION

syntax AlertFactory.invalid_ip(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:INVALID-IP

syntax AlertFactory.new_arp(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type VI:NEW-ARP

syntax AlertFactory.duplicated_ip(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:ARP:DUP

syntax AlertFactory.link_reconnection(<reason>)

36 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

parameters • reason: a message to be displayed in the alert

description raise an alert of type NET:LINK-RECONNECTION

syntax AlertFactory.rst_from_producer(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type NET:RST-FROM-PRODUCER

syntax AlertFactory.tcp_syn(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type NET:TCP-SYN

syntax AlertFactory.tcp_flood(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:TCP-FLOOD

syntax AlertFactory.protocol_flood(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:PROTOCOL-FLOOD

syntax AlertFactory.mac_flood(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:MAC-FLOOD

syntax AlertFactory.network_scan(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:NETWORK-SCAN

syntax AlertFactory.cleartext_password(<reason>)

n2os-sdk v24.3.1 2024-09-09 37

1 - Scriptable protocols Software Development Kit

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:CLEARTEXT-PASSWORD

syntax AlertFactory.ddos_attack(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:DDOS

syntax AlertFactory.unsupported_func(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:UNSUPPORTED-FUNC

syntax AlertFactory.illegal_parameters(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:ILLEGAL-PARAMETERS

syntax AlertFactory.weak_password(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:PASSWORD:WEAK

syntax AlertFactory.malware_detected()

description raise an alert of type SIGN:MALWARE-DETECTED

syntax AlertFactory.unknown_rtu(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:PROC:UNKNOWN-RTU

syntax AlertFactory.missing_variable(<reason>)

parameters • reason: a message to be displayed in the alert

38 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

description raise an alert of type SIGN:PROC:MISSING-VAR

syntax AlertFactory.protocol_injection(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:PROTOCOL-INJECTION

syntax AlertFactory.new_variable(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type VI:PROC:NEW-VAR

syntax AlertFactory.new_variable_value(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type VI:PROC:NEW-VALUE

syntax AlertFactory.device_state_change(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:DEV-STATE-CHANGE

syntax AlertFactory.configuration_change(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:CONFIGURATION-CHANGE

syntax AlertFactory.malicious_protocol(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:MALICIOUS-PROTOCOL

syntax AlertFactory.weak_encryption(<reason>)

parameters • reason: a message to be displayed in the alert

n2os-sdk v24.3.1 2024-09-09 39

1 - Scriptable protocols Software Development Kit

description raise an alert of type SIGN:WEAK-ENCRYPTION

syntax AlertFactory.malformed_traffic(<triggerId>, <reason>)

parameters • triggerId: identifier of the triggering engine entity
• reason: a message to be displayed in the alert

description raise an alert of type SIGN:MALFORMED-TRAFFIC

syntax AlertFactory.suspicious_time(<triggerId>, <reason>)

parameters • triggerId: identifier of the triggering engine entity
• reason: a message to be displayed in the alert

description raise an alert of type SIGN:SUSP-TIME

syntax AlertFactory.new_node(<nodeId>)

parameters • nodeId: identifier of the node

description raise an alert of type VI:NEW-NODE

syntax AlertFactory.new_target_node(<nodeId>)

parameters • nodeId: identifier of the node

description raise an alert of type VI:NEW-NODE:TARGET

syntax AlertFactory.new_node_malicious_ip(<nodeId>, <threatName>)

parameters • nodeId: identifier of the node
• threatName: the name of the threat

description raise an alert of type VI:NEW-NODE:MALICIOUS-IP

syntax AlertFactory.new_mac_vendor(<nodeId>, <macAddress>, <reason>)

parameters • nodeId: identifier of the node
• macAddress: media access control (MAC) Address
• reason: a message to be displayed in the alert

description raise an alert of type VI:GLOBAL:NEW-MAC-VENDOR

40 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

syntax AlertFactory.new_mac(<nodeId>, <macAddress>, <reason>)

parameters • nodeId: identifier of the node
• macAddress: MAC Address
• reason: a message to be displayed in the alert

description raise an alert of type VI:NEW-MAC

syntax AlertFactory.malicious_domain(<domain>, <threatName>,

<reason>)

parameters • domain: the malicious domain
• threatName: the name of the threat
• reason: a message to be displayed in the alert

description raise an alert of type SIGN:MALICIOUS-DOMAIN

syntax AlertFactory.malicious_url(<url>, <threatName>, <reason>)

parameters • url: the malicious uniform resource locator (URL)
• threatName: the name of the threat
• reason: a message to be displayed in the alert

description raise an alert of type SIGN:MALICIOUS-URL

syntax AlertFactory.configuration_mismatch(<nodeId>, <triggerId>,

<reason>)

parameters • nodeId: identifier of the node
• triggerId: identifier of the triggering engine entity
• reason: a message to be displayed in the alert

description raise an alert of type VI:CONF-MISMATCH

syntax AlertFactory.multiple_ot_device_reservations(<sNodeId>,

<dNodeId>, <protocolId>, <bpfFilter>, <protocolType>,

<reason>)

n2os-sdk v24.3.1 2024-09-09 41

1 - Scriptable protocols Software Development Kit

parameters • sNodeId: identifier of the source node
• dNodeId: identifier of the destination node
• protocolId: identifier of the protocol
• bpfFilter: Berkeley Packet Filter (BPF) filter
• protocolType: type of the protocol according to the ProtocolType

type
• reason: a message to be displayed in the alert

description raise an alert of type SIGN:MULTIPLE-OT_DEVICE-RESERVATIONS

syntax AlertFactory.multiple_unsuccessful_logins(<sNodeId>,

<dNodeId>, <protocolId>, <bpfFilter>, <protocolType>,

<reason>)

parameters • sNodeId: identifier of the source node
• dstNodeId: identifier of the destination node
• protocolId: identifier of the protocol
• bpfFilter: BPF filter
• protocolType: type of the protocol according to the ProtocolType

type
• reason: a message to be displayed in the alert

description raise an alert of type SIGN:MULTIPLE-UNSUCCESSFUL-LOGINS

syntax AlertFactory.generic_event(<triggerId>, <reason>)

parameters • triggerId: identifier of the triggering engine entity
• reason: a message to be displayed in the alert

description raise an alert of type GENERIC:EVENT

syntax AlertFactory.multiple_access_denied(<sNodeId>, <dNodeId>,

<protocolId>, <bpfFilter>, <protocolType>, <reason>)

parameters • sNodeId: identifier of the source node
• dNodeId: identifier of the destination node
• protocolId: identifier of the protocol
• bpfFilter: BPF filter
• protocolType: type of the protocol according to the ProtocolType

type
• reason: a message to be displayed in the alert

description raise an alert of type SIGN:MULTIPLE-ACCESS-DENIED

42 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

syntax AlertFactory.protocol_injection(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:PROTOCOL-INJECTION

syntax send_alert_malformed_packet(<reason>)

parameters • reason: a message to be displayed in the alert

description raise an alert of type SIGN:MALFORMED-TRAFFIC

syntax notify_captured_url(<clientNodeId>, <serverNodeId>, <url>,

<user>, <operation>, <size>, <properties>)

parameters • clientNodeId: node ID of the client
• serverNodeId: node ID of the server
• url: the captured URL to notify
• user: optional string parameter for the user related to the captured

URL
• operation: optional string parameter describing the operation
• size: optional integer parameter reporting the size in bytes

transferred when accessing the URL
• properties: optional parameter in JSON format for properties

description notify a captured URL to the system. Note that captured URLs need to

be explicitly enabled by specifying the vi captured_urls enabled

configuration setting.

syntax notify_link_events(<event>, <parameters>)

parameters • event: event to notify
• parameters: JSON dictionary reporting the parameters associated

with the event

description notify a link event to the system. Note that link events need to be explicitly

enabled by specifying the vi link_events enabled configuration

setting.

syntax packet.source_id()

description return the source node id

n2os-sdk v24.3.1 2024-09-09 43

1 - Scriptable protocols Software Development Kit

syntax packet.destination_id()

description return the destination node id

syntax packet.source_ip()

description return the source node ip

syntax packet.destination_ip()

description return the destination node ip

syntax packet.source_mac()

description return the source node mac

syntax packet.destination_mac()

description return the destination node mac

syntax packet.source_port()

description return the source node port

syntax packet.destination_port()

description return the destination node port

syntax packet.is_ip()

description return true if the packet is an ip packet

syntax packet.transport_type()

description return the transport layer type, can be "tcp", "udp", "ethernet", "icmp" or

"unknown"

syntax packet.source_node()

description returns the source node

syntax packet.destination_node()

44 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 1 - Scriptable protocols

description returns the destination node

syntax packet.time()

description return the packet time

syntax session.set_pending_request_number(<request_id>, <key>,

<value>)

parameters • request_id: a number used to uniquely identify the request
• key: a number used to separate different values in the same request
• value: the number to store

description store a number on the session

syntax session.read_pending_request_number(<request_id>, <key>)

parameters • request_id: a number used to uniquely identify the request
• key: a number used to separate different values in the same request

description read a number from the session

syntax session.set_pending_request_string(<request_id>, <key>,

<value>)

parameters • request_id: a number used to uniquely identify the request
• key: a number used to separate different values in the same request
• value: the string to store

description store a string on the session

syntax session.read_pending_request_string(<request_id>, <key>)

parameters • request_id: a number used to uniquely identify the request
• key: a number used to separate different values in the same request

description read a string from the session

syntax session.has_pending_request(<request_id>)

parameters • request_id: a number used to uniquely identify the request

n2os-sdk v24.3.1 2024-09-09 45

1 - Scriptable protocols Software Development Kit

description return true if there are values stored with the request_id

syntax session.has_pending_request_value(<request_id>, <key>)

parameters • request_id: a number used to uniquely identify the request
• key: a number used to separate different values in the same request

description return true if there are values stored with the request_id and key

syntax session.close_pending_request(<request_id>)

parameters • request_id: a number used to uniquely identify the request

description close the pending request and delete the associated data

syntax log_d(<msg>)

parameters • msg: the message to log

description log a debug message

syntax log_i(<msg>)

parameters • msg: the message to log

description log an info message

syntax log_e(<msg>)

parameters • msg: the message to log

description log an error message

46 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 2 - Scriptable variables

Chapter 2. Scriptable variables

n2os-sdk v24.3.1 2024-09-09 47

2 - Scriptable variables Software Development Kit

48 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 2 - Scriptable variables

Setup

Do this procedure to add a script for custom variables correlation.

Procedure

1. Copy the Lua script in /data/scriptable_variables

2. Configure Guardian with this rule conf.user configure vi scriptable-

variable script <script_name> in CLI (<script_name> is the name of the file

including the extension)

3. Execute service n2osids stop, the IDS process will be restarted automatically.

What to do next:

What to do next
It is advised that after the IDS process gets restarted, the corresponding log file
(n2os_ids.log) is checked:

• If the script was loaded successfully, an INFO log line like the example below will
have been output:

INFO: ScriptableVariablesScript: Successfully loaded script

 (script.lua)

• If the script loading has failed, one or more ERROR log lines should be present in
the log file, providing details on what the problem was.

After the above steps, the new scriptable variables correlation script will be loaded in
Guardian and will be offered all variable updates.

n2os-sdk v24.3.1 2024-09-09 49

2 - Scriptable variables Software Development Kit

Writing a variables correlation script

As is the case for scriptable protocols, variable correlation scripts are written in Lua.
For more information on the language, please refer to the official Lua documentation
(https://www.lua.org/start.html).

The only requirement for variable correlation scripts is that a global function with name
on_receive_variable exists. Thus, the basic structure of a variable correlation script is:

function on_receive_variable(node_id, namespace, name, data_value,

 is_from_config)

end

Function on_receive_variable will be invoked on every variable update that takes
place within Guardian. On every invocation, this function will receive 5 arguments
which will provide information on the new variable value and its context:

• node_id: The identity of the node, to which the variable belongs.
• namespace: Identifier of the variable container, also known as remote terminal

unit (RTU) ID. When the variable update is coming from a protocol that does not
support it, it will be empty or hold a fixed, hardcoded value.

• name: The name of the variable being updated.
• data_value: The data value is a table value describing the updated variable value.

Consult the API reference (on page 53) for the fields exposed by this value.
• is_from_config: Variable updates may arrive over traffic or due to configuration

commands. This argument will be true in case the variable update has been
administered via command.

By adding logic in the on_receive_variable function, it is possible to make the
system respond to variable update events in user specific ways. For example, the script
below will raise a Variable Flow Anomaly alert, if the variable with name ioa-515 raises
above a threshold of 200:

function on_receive_variable(node_id, namespace, name, data_value,

 is_from_config)

 if name == "ioa-515" and data_value.value > 200 then

 AlertFactory.variable_flow_anomaly("Unexpected variable value!")

 end

end

The above example shows how a simple variables correlation script may look like. In
practice though such usages are not expected, since Guardian provides other, easier
ways for implementing such checks (i.e. assertions).

50 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 2 - Scriptable variables

The scriptable variables correlation becomes a much more interesting mechanism
when scripts become stateful: by using top level scope variables, it is possible to
maintain state that is consulted and updated across different script invocations. For
example, if we want to introduce a check on the first derivative of variable ioa-515, the
script below may serve as a basis:

local values_per_node = {}

function on_receive_variable(node_id, namespace, name, data_value,

 is_from_config)

 if name == "ioa-515" then

 if values_per_node[node_id] == nil then

 values_per_node[node_id] = {}

 end

 work_table = values_per_node[node_id]

 work_table.previous = work_table.current

 work_table.current = { time=data_value.time, value=data_value.value }

 if work_table.previous ~= nil then

 delta_position = work_table.current.value -

 work_table.previous.value

 -- Time is reported in msec

 delta_time = (work_table.current.time -

 work_table.previous.time) / 1000.0

 computed_rate = delta_position / delta_time

 if (computed_rate > 1.0) then

 AlertFactory.variable_flow_anomaly("Derivative increased

 above threshold!")

 end

 end

 end

end

Notes on above script:

n2os-sdk v24.3.1 2024-09-09 51

2 - Scriptable variables Software Development Kit

• The local values_per_node = {} statement initializes a table on top level
script scope. This table is maintained across script invocations and is used to keep
the two last values of variable ioa-515 per node.

• In Lua, accessing fields that don't exist does not raise an error, but simply returns
value nil. Thus the statement work_table.previous = work_table.current
can be invoked regardless if there exists a current value or not.

• In production level scripts, it would be necessary to check whether the current
and previous times are identical, in order to avoid dividing by zero.

52 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 2 - Scriptable variables

API reference

The capabilities available for scriptable variables correlation is a subset of those
available for scriptable protocols. This section enumerates all available data types or
functions; for more details on them consult the Scriptable Protocols API Reference (on
page 24).

Available Lua libraries
Same as for scriptable protocols.

Data types
• DataValue

• DataCause

• DataType

Functions
• All AlertFactory functions
• All log_* functions

n2os-sdk v24.3.1 2024-09-09 53

2 - Scriptable variables Software Development Kit

54 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Chapter 3. OpenAPI

n2os-sdk v24.3.1 2024-09-09 55

3 - OpenAPI Software Development Kit

56 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

OpenAPI

This section describes OpenAPI implementation, which consists of a Hypertext Transfer
Protocol (HTTP) endpoint for executing custom queries.

Important:

Queries and exports permission is needed to query all OpenAPI endpoints. In

addition, there are further Role-Based Access Control (RBAC) permissions that

restrict API queries to specific tables.

OpenAPI methods that change sensor data produce audit logs. For example,
this happens when a new user is added through OpenAPI or when an alert is
acknowledged. By default, read-only operations do not produce audit logs. It is possible
to change this behavior and have GET OpenAPI methods produce audit logs by
specifying the following CLI command:

conf.user configure open_api audit get enabled true

n2os-sdk v24.3.1 2024-09-09 57

3 - OpenAPI Software Development Kit

Setup

To perform a call to the endpoint you need to pass authentication credentials as
headers, the examples provided use Postman, an HTTP client.

Remember to use your Nozomi Networks Solution's web interface internet protocol (IP)
address instead of the example one.

Basic authentication

Nozomi Networks suggests to create dedicated users for OpenAPI usage, with minimal
permissions necessary to access the required data sources.

Figure 1. How to perform an authenticated call

Token authentication

As an alternative to basic authentication, use OpenAPI keys created from the Web user
interface (UI) to sign in. See Chapters 3 and 5 in the N2OS User Manual for instructions
on creating an OpenAPI key.

Note:

Only local users can have OpenAPI keys.

Using token authentication is a two step process. First, use the /api/open/sign_in
endpoint with a valid key to obtain a JSON web token (JWT) token.

58 n2os-sdk v24.3.1 2024-09-09

https://www.getpostman.com/

Software Development Kit 3 - OpenAPI

Figure 2. Obtaining a JWT token

Then, use the JWT token as bearer token for any successive call to the API.

Figure 3. Authentication with bearer token

Remarks

1. The JWT token expires 30 minutes after being created. To use API for a longer
time, request a new token by calling sign_in again.

2. Any number of JWT tokens can be created.

n2os-sdk v24.3.1 2024-09-09 59

3 - OpenAPI Software Development Kit

Errors

With basic authentication, if you fail to provide valid authentication credentials the
expected error will be 401 Unauthorized, as shown below.

Figure 4. Example of a failed basic authentication call

With token authentication, when an invalid or expired token is used, the expected error
will be 401 Unauthorized. The body of the response will include a description of the
problem, as shown below for the case of an expired token:

Figure 5. Example of a failed token authentication call

If you ask for a data source that does not exist you will receive a proper message in the
error field.

Figure 6. Wrong data source

60 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Query endpoint

You can manipulate data sources through the use of queries, which are commands
piped one after another. See Queries, or go to /#/query in your Nozomi Networks
solution Web UI for examples.

Requirements and restrictions

• Users must have permission to execute API calls
• Results display the list of queried items
• We recommend that you use pagination, adding page and count params
• The page param is the page number to return, and count is the page dimension
• If count is not provided, the default value is 10,000; if page is not provided, the

default page number is 1
• If the provided count value is higher than 10,000, no more than 10,000 items are

returned
• The maximum allowable page number is 1,000. Requests for pages beyond this

limit will result in an error response Bad request

Example: To see how many nodes are in the system, call the following URL:
https://10.0.1.10/api/open/query/do?query=nodes | count

Figure 7. Example of a count query

A more complex example is: https://10.0.1.10/api/open/query/do?query=nodes |
where_link protocol == http | head 5.

In the image we've used Postman's interface to collapse the results so you could clearly
see it's five, as we wanted.

n2os-sdk v24.3.1 2024-09-09 61

3 - OpenAPI Software Development Kit

Figure 8. Filtering HTTP and taking the first five results

HTTP API Best Practices

Use time filter for ordering and filtering
When fetching items from the API, consider using a time filter, such as
record_created_at, to sort the items and retrieve only those that are greater than the
specified time value. This allows efficient fetching of recent data.

alerts | sort record_created_at asc | where record_created_at >

 1674828173887

Handling page 1000 number limit
The API supports pagination with a page parameter; it is advisable to set up a time field
pivot when reaching page 1000 and start again from page 1.

/api/open/query/do?query=alerts | sort record_created_at asc | where

 record_created_at > 1674828173887&page=1&count=100

Select only relevant fields
When making API requests, specify the fields you are interested in. This will ensure that
the API response contains only the data that is relevant to your use case, reducing the
size of the response payload and minimizing unnecessary data transfer.

alerts | select id risk record_created_at description name

Limit items per page
To avoid heavy response payloads and potential performance issues, it is
recommended to set a reasonable limit on the number of items per page. Generally,
the number of items per page should be kept below 1000, unless there is a specific use
case that necessitates a higher value.

62 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

CLI endpoint

You can apply changes to the system by issuing CLI commands over this endpoint.

The endpoint is located at /api/open/cli and requires to be invoked with the cmd
parameter with a POST.

Figure 9. Example of a CLI command

CLI commands allow to change virtually anything inside the system, please refer to the
Configuration section of the User Manual for a more complete reference.

n2os-sdk v24.3.1 2024-09-09 63

3 - OpenAPI Software Development Kit

Import CSV endpoint

/api/open/nodes/import allows you to enrich the information associated to nodes by
uploading a comma-separated value (CSV) file. Each row affects the nodes matching
the specified ip field value. When there are no matches, new nodes are created.

Requirements and Restrictions

1. The authenticated user must be in a group with admin role
2. Only CSV files with a header are accepted
3. There must be an ip column
4. In addition to ip, only the fields listed below and custom fields are considered.

Every other provided field will be ignored. If you need to provide values for
custom fields, please make sure that the names of these custom fields have been
already created.

label

firmware_version

vendor

product_name

serial_number

os

mac_address

type

Example of CSV file

ip,label,firmware_version,vendor,product_name,serial_number,os,mac_address,type

192.168.1.57,node 57,1.2.2,ACME,ACME Product 0,abcdefg,Windows XP

 SP3,00:00:00:11:11:11,computer

64 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Figure 10. Example of the request

n2os-sdk v24.3.1 2024-09-09 65

3 - OpenAPI Software Development Kit

Import JSON endpoint

/api/open/nodes/import_from_json allows you to enrich the information associated
to nodes. The provided information affects the nodes matching the specified ip field
value. When there are no matches, new nodes are created.

Requirements and Restrictions

1. The authenticated user must be in a group with admin role
2. The input must be a JSON dictionary containing a nodes key whose value is an

array of nodes information
3. Nodes must have a value for the ip field
4. In addition to ip, only the fields listed below and custom fields are considered.

Every other provided field will be ignored. If you need to provide values for
custom fields, please make sure that the names of these custom fields have been
already created.

label

firmware_version

vendor

product_name

serial_number

os

mac_address

type

66 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Figure 11. Example of the request

n2os-sdk v24.3.1 2024-09-09 67

3 - OpenAPI Software Development Kit

Alerts endpoint

A POST to /api/open/alerts/close request lets you to close a group of alerts passed
as a json list of ids in the body of the request. You must also pass as parameter the
close_action field containing delete_rules or learn_rules in case you want to close
alerts as security or as change.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role.
2. The input data must be a JSON dictionary containing a ids key whose value

must be an array of alert 'id' and a 'close_action' constant field.
3. In case the request body does not adhere to the format described above the call

returns a 422 error.
4. In case the request is well formed, the result will contain the id of the job in

charge of the task. You can monitor the status of the job via the alerts/close/
status/:id API.

 {

 "ids": ["uuid"],

 "close_action": "learn_rules"

 }

Figure 12. Example of alerts close request

A GET to /api/open/alerts/close/status/:id request lets you to get the status of a
job in charge of a close alerts task.

Requirements and Restrictions

68 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

1. The authenticated user must be in a group having admin role.
2. As last parameter of the path you need to specify the id of the job returned by the
alerts/close API.

3. The result will contain the status of the job, which can have one of the following
values: SUCCESS, PENDING or FAIL

4. In case of FAIL status, the error field will report the error reason.

Figure 13. Example of alerts/close/status/:id request

A POST to /api/open/alerts/ack request lets you to ack/un-ack a group of alerts
passed as a json list of id/ack_status pairs in the body of the request.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role.
2. The input data must be a JSON dictionary containing a data key whose value

should be an array of pairs with an alert 'id' and an 'ack' field. Ack can be true or
false.

3. In case the request body does not adhere to the format described above the call
returns a 422 error.

4. In case the request is well formed, the result will contain the id of the job in
charge of the task. You can monitor the status of the job via the alerts/ack/
status/:id API.

 {

 "data": [

 {

 "id": "uuid",

 "ack": true

 }

]

n2os-sdk v24.3.1 2024-09-09 69

3 - OpenAPI Software Development Kit

 }

Figure 14. Example of alerts/ack request

A GET to /api/open/alerts/ack/status/:id request lets you to get the status of a job
in charge of a ack/un-ack alerts task.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role.
2. As last parameter of the path you need to specify the id of the job returned by the
alerts/ack API.

3. The result will contain the status of the job, which can have one of the following
values: SUCCESS, PENDING or FAIL

4. In case of FAIL status, the error field will report the error reason.

Figure 15. Example of alerts/ack/status/:id request

A GET to /api/open/alerts/all request lets you to get the IDs of alerts matching
a condition. You can specify a filter query in the query parameter and an additional
parameter named has_trace to get the status of the corresponding trace.

Requirements and Restrictions

1. The authenticated user has to belong to a group having admin role or with
Alerts section enabled.

2. The query parameter should be in Nozomi Networks Query Language format,
where the table name is implicit, i.e. alerts.

70 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

3. The has_trace parameter type is boolean.
4. If no alert matches the specified conditions, a 404 error will be returned.

Figure 16. Example of alerts/all request

A GET to /api/open/alerts/:id/trace request lets you to get a file containing the
trace of the alert, whose id is specified as a parameter.

Requirements and Restrictions

1. The authenticated user has to belong to a group having admin role or with
Alerts section enabled.

2. The alert id should be passed in the path.
3. If the alert does not exist, a 422 error is returned.
4. In case there is no trace for the specified alert, a 404 error will be returned.

Figure 17. Example of alerts/:id/trace request

n2os-sdk v24.3.1 2024-09-09 71

3 - OpenAPI Software Development Kit

A POST to /api/open/alerts/import request lets you to import alerts by passing
attributes in JSON format in the body of the request.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role or with Alerts
section enabled.

2. The alerts information should be provided in a JSON array named alerts.
3. In case the request body does not adhere to the format described above the call

returns a 422 error.
4. In case the request is well formed, the result can contain the validation outcome

for errors regarding mandatory fields and warnings for fields that are potentially
missing.

5. If one or more alerts are passing the validation, the result will also contain the id
of the job in charge of importing the alerts. You can monitor the status of the job
via the alerts/import-status API.

Figure 18. Example of alerts/import request

A GET to /api/open/alerts/import-status request lets you to get the status of a job
in charge of importing alerts.

Requirements and Restrictions

72 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

1. The authenticated user must be in a group having admin role.
2. You need to specify the id of the job returned by the alerts/import API in the id

parameter.
3. The result will contain the status of the job, which can have one of the following

values: SUCCESS, PENDING or FAIL
4. In case of FAIL status, the error field will report the error reason.

Figure 19. Example of alerts/import-status request

A PATCH to /api/open/alerts/:id lets you to update the alert's note.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role or with Allow alert
ack and edit enabled.

2. The note must be passed as a query parameter or in the JSON body.
3. The result will contain the JSON representation of the Alert updated.

Figure 20. Example of alert's note update request

n2os-sdk v24.3.1 2024-09-09 73

3 - OpenAPI Software Development Kit

Trace endpoint

Filter traces
A GET to /api/open/traces/all request allows you to get traces matching a
condition. You can specify a filter query in the query parameter, which is a standard
N2OS query condition, applied to the trace_requests data source. You have to specify
the operation parameter defining the requested operation. So far the only allowed
value for the operation parameter is download.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role permission.
2. As a result you will get a file containing the trace or the traces filtered according

to the specified condition.
3. If the trace is still in progress or it is not found, a 422 error with a proper reason

string will be returned.

Figure 21. Example of traces/all request

BPF filter
A GET to /api/open/traces/bpf-filter request allows you to select traces using
a BPF filter. This call returns a job_id, while the actual disk search is performed
asynchronously. The search will return a list of the first packet capture (pcap) traces
that match the filter. The maximum number of pcap traces is 50 by default and can
be configured with the open_api bpf_filter traces_limit setting. There can’t be more than a
limited number of concurrent BPF trace searches at a time. This number is 2 by default
and can be configured with the open_api bpf_filter max_concurrent_searches setting.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role permission.

74 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Figure 22. Example of a BPF filter request

A GET to /api/open/traces/bpf-filter-status request allows you to get the status
of a job in charge of looking for traces given a BPF filter.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role permission.
2. You need to specify the id of the job returned by the traces/bpf_filter API in the id

parameter.
3. The result will contain the status of the job, which can have one of the following

values: SUCCESS, PENDING or FAIL.
4. In case of FAIL status, the error field will report the error reason.

n2os-sdk v24.3.1 2024-09-09 75

3 - OpenAPI Software Development Kit

Figure 23. Example of traces/bpf-filter-status request

76 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Users endpoint

A GET to /api/open/users allows you to get a list of all the users.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role.
2. The result contains the list of all users.
3. It's possible to use pagination adding page and count params
4. The page param is the number of the page to return, the count is the dimension

of the page.
5. If count is nil or 0 the default value will be 100, if page is nil or 0 the request will

not be paginated.
6. This api is disabled by default; to enable it add conf.user configure api users
enabled true in CLI.

Figure 24. Example of users all request

A GET to /api/open/user_groups allows you to get a list of all the user groups.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role.
2. The result contains the list of all user groups.
3. It's possible to use pagination adding page and count params
4. The page param is the number of the page to return, the count is the dimension

of the page.
5. If count is nil or 0 the default value will be 100, if page is nil or 0 the request will

not be paginated.

n2os-sdk v24.3.1 2024-09-09 77

3 - OpenAPI Software Development Kit

Figure 25. Example of user groups all request

A GET to /api/open/users/:id allows you to get the user having the id passed as path
parameter.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role.
2. As last parameter of the path you need to specify the id of the user.
3. The result will contain the user
4. In case the user with that id is not found you'll get a 404.

Figure 26. Example of users/:id request

A DELETE to /api/open/users/:id allows you to delete the user having the id passed
as path parameter.

78 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Requirements and Restrictions

1. The authenticated user must be in a group having admin role.
2. As last parameter of the path you need to specify the id of the user.
3. The result will contain the status code 204 for success else the error code
4. In case the user with that id is not found you'll get a 404.

Figure 27. Example of delete users/:id request

A POST to /api/open/users allows you to create a new user.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role.
2. The input must be a JSON dictionary containing the user fields properly

populated
3. username is mandatory and unique.
4. password is mandatory and have to respect the password strength rules.
5. user_group_ids is mandatory, must contain at least an id of an existing user-

group.
6. strategy can contain the value "local" or "saml".
7. is_suspended is a boolean.
8. should_update_pwd true if the user must update the password when log-in.
9. ssh_keys is the user secure shell (SSH) key if wants to connect via ssh to the

instance.
10. allow_root_ssh true to allow the user having the ssh_key above to connect via

SSH to the instance.
11. In case the request is well formed return a 201 response with the id of the user

created inside the result.

 {

 "username": "user_under_test22",

 "password": "aValidP4ss!",

 "user_group_ids": [2],

n2os-sdk v24.3.1 2024-09-09 79

3 - OpenAPI Software Development Kit

 "strategy": "local",

 "is_suspended": false,

 "should_update_pwd": false,

 "ssh_keys": "an_ssh_key",

 "allow_root_ssh": true

 }

Figure 28. Example of users/ack request

A PUT to /api/open/users/:id allows you to update the user with the id passed as
path param.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role.
2. As last parameter of the path you need to specify the id of the user you want to

update.
3. The input must be a JSON dictionary containing the user field properly

populated
4. If the update goes well the call return 204 (No content) response
5. You can't update the password here because updating password is not

idempotent so you can't do via PUT.
6. The fields you can update are listed below.
7. user_group_ids must contain at least one valid id.

 {

 "username": "user_under_test22",

 "strategy": "local",

80 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

 "user_group_ids": [1,2],

 "is_suspended": false,

 "should_update_pwd": false,

 "ssh_keys": "a_new_key",

 "allow_root_ssh": true

 }

Figure 29. Example of update users/:id request

A PATCH to /api/open/users/:id/password allows you to change the password of the
user having the id passed as path param.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role.
2. The user id should be passed in the path.
3. You need to pass the new password in the body.
4. New password must respect the password strength rules.
5. In case the password is valid will be return an empty response with status code

204.

 {

 "password": "4ValidP4ssw0rd!"

 }

n2os-sdk v24.3.1 2024-09-09 81

3 - OpenAPI Software Development Kit

Figure 30. Example of users/:id/password request

82 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

PCAPs endpoint

A GET request to /api/open/pcaps allows you to get the list of all traces available on
the machine.

This endpoint lets you to interact with pcaps that have been uploaded to Guardian
from the Upload traces page of the System section.

Figure 31. Upload traces page

A GET request to /api/open/pcaps/:id allows you to retrieve a given trace.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role or with Upload
traces section enabled.

2. In case the request body does not adhere to the format described above, the call
returns a 422 error.

3. If you specify an ID of a trace that does not exist, the call returns a 404 error.
4. If the request is accepted, the result will contain information on the retrieved

trace.

n2os-sdk v24.3.1 2024-09-09 83

3 - OpenAPI Software Development Kit

Figure 32. Example of traces get all list request

Figure 33. Example of traces get by ID request

A DELETE request to /api/open/pcaps/:id allows you to delete a given trace.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role or with Upload
traces section enabled.

2. In case the request body does not adhere to the format described above, the call
returns a 422 error.

3. If you specify an ID of a trace that does not exist, the call returns a 404 error.
4. If the request is accepted, the trace will be deleted.

84 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Figure 34. Example of trace delete request

A POST request to /api/open/pcaps/upload allows you to upload a trace passed as a
file in the body of the request.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role or with Upload
traces section enabled.

2. The trace should be passed in the form-data section of the request body.
3. In case the request body does not adhere to the format described above, the call

returns a 422 error.
4. If the file sent in the request is not a valid trace, the call returns a 422 error along

with an error reason describing the cause of the validation failure.
5. If the request is accepted, the trace will be uploaded.

Figure 35. Example of trace upload request

n2os-sdk v24.3.1 2024-09-09 85

3 - OpenAPI Software Development Kit

A POST request to /api/open/pcaps/import allows you to import a trace file that is
already present in the machine.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role or with Upload
traces section enabled.

2. The trace file should be present in the /data/tmp directory of the machine.
3. The filename parameter of the request should contain the name of the trace file.
4. In case the request body does not adhere to the format described above, the call

returns a 422 error.
5. If the trace file is not a valid trace, the call returns a 422 error along with an error

reason describing the cause of the validation failure.
6. If the request is accepted, the trace will be uploaded.

Figure 36. Example of trace import request

A PATCH request to /api/open/pcaps allows you to replay a trace that has been
previously uploaded or imported.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role or with Upload
traces section enabled.

2. The trace should be present in the list of the available traces returned by the GET
request to /api/open/pcaps.

3. The id parameter of the request should contain the ID of the trace.
4. The use_packet_time boolean parameter should be set to true if you want to

use the time of the packets; false otherwise.

86 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

5. The data_to_reset_before_play parameter should be set to {} if you do not
want to reset data before playing the trace. Otherwise, you need to specify a
JSON dictionary with the sections you want to reset, for example {"alerts":
true, "vi": true}. The list of all available sections is the following:

◦ alerts_data
◦ assertions
◦ learning
◦ network_data
◦ process_data
◦ queries
◦ smart_polling_data
◦ timemachine_data
◦ traces_data
◦ vi_data
◦ vulnerability_data

The list above reflects the options available for Data reset in the UI.
6. In case the request body does not adhere to the format described above, the call

returns a 422 error.
7. If you specify an ID of a trace that does not exist, the call returns a 404 error.
8. If the request is accepted, the trace will be replayed.

Figure 37. Example of trace replay request

A PATCH request to /api/open/pcaps/note allows you to change the note field of a
trace.

Requirements and Restrictions

n2os-sdk v24.3.1 2024-09-09 87

3 - OpenAPI Software Development Kit

1. The authenticated user must be in a group having admin role or with Upload
traces section enabled.

2. The trace should be present in the list of the available traces returned by the GET
request to /api/open/pcaps.

3. The id parameter of the request should contain the ID of the trace.
4. The note parameter of the request should contain the text you want to change.
5. In case the request body does not adhere to the format described above, the call

returns a 422 error.
6. If the request is accepted, the note will be changed.

Figure 38. Example of trace note request

88 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Reports endpoint

A GET to /api/open/reports allows you to get a list of all the reports generated.

Requirements and Restrictions

1. A user having the permission to execute api.
2. The result contains the list of all the reports.
3. It's possible to use pagination adding page and count params
4. The page param is the number of the page to return, the count is the dimension

of the page.
5. If count is nil or 0 the default value will be 100, if page is nil or 0 the request will

not be paginated.
6. You can filter the result passing a template_name as query param having value

the report templates name you want filtering on.

Figure 39. Example of reports all request

A GET to /api/open/reports/:id allows you to get the report having the id passed as
path parameter.

Requirements and Restrictions

1. A user having the permission to execute api.
2. As last parameter of the path you need to specify the id of the report.
3. The result will contain the report.
4. In case the report with that id is not found you'll get a 404.

n2os-sdk v24.3.1 2024-09-09 89

3 - OpenAPI Software Development Kit

Figure 40. Example of reports/:id request

A GET to /api/open/reports/:id/files allows you to download the report having the
id passed as path parameter.

Requirements and Restrictions

1. A user having the permission to execute api.
2. As middle parameter of the path you need to specify the id of the report.
3. The report download will be triggered.
4. In case the report with that id is not found you'll get a 404.

Figure 41. Example of reports/:id request

90 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

A POST to /api/open/reports allows you to create a new report.

Requirements and Restrictions

1. A user having the permission to execute api.
2. You need to pass as query param the report_template_id you want to create.
3. In case the request is well formed return a 202 response with the id of the job is

taking care of teh request.

Figure 42. Example of create report request

A GET to api/open/reports/jobs/1/status allows you to get the create report job
result.

Requirements and Restrictions

1. A user having the permission to execute api.
2. As parameter of the path you need to specify the id of the job.
3. The result will contain the job status

n2os-sdk v24.3.1 2024-09-09 91

3 - OpenAPI Software Development Kit

Figure 43. Example of reports/:id request

92 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Report templates endpoint

A GET to /api/open/report_templates allows you to get a list of all the report
templates.

Requirements and Restrictions

1. A user having the permission to execute api.
2. The result contains the list of all the report templates.
3. It's possible to use pagination adding page and count params
4. The page param is the number of the page to return, the count is the dimension

of the page.
5. If count is nil or 0 the default value will be 100, if page is nil or 0 the request will

not be paginated.

Figure 44. Example of reports all request

A GET to /api/open/report_templates/:id allows you to get the report template
having the id passed as path parameter.

Requirements and Restrictions

1. A user having the permission to execute api.
2. As last parameter of the path you need to specify the id of the report template.
3. The result will contain the report template.
4. In case the report with that id is not found you'll get a 404.

n2os-sdk v24.3.1 2024-09-09 93

3 - OpenAPI Software Development Kit

Figure 45. Example of reports/:id request

94 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Quarantine endpoint

A GET request to /api/open/quarantine allows you to get a file from the quarantine
directory.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role.
2. The full path of the file must be specified in the file parameter and the format

should be /data/quarantine/<NAME>.
3. If you specify a path that does not exist, the call returns a 404 error.
4. If the request is accepted, the result will contain the actual file that Guardian

extracted from traffic and that the Sandbox classified as malicious.

Figure 46. Example of request

Hint: as shown in the top part of the previous screenshot, the file parameter to
be used with the request can be found in the properties field of SIGN:MALWARE-
DETECTED alerts.

n2os-sdk v24.3.1 2024-09-09 95

3 - OpenAPI Software Development Kit

Threat intelligence

A POST request to /api/open/threat_intelligence allows you to create indicators.

Requirements and restrictions

1. An authenticated user must be in an admin role group or belong to a Threat
Intelligence group with the Allow configuration option switched to ON in the
group settings.

2. JSON content is represented as a array of contents that allows you to insert more
than one (1) indicator at a time.

3. Type of content must be specified in the type parameter and the value must be:
packet_rules, yara_rules or stix_indicators.

4. Content name must be specified in the name parameter.
5. The content must be specified in the content parameter.
6. If the request is accepted, the result contains the result with an ID as value.
7. The request is rejected if the sensor is connected to a Central Management

Console (CMC).

Figure 47. Example of request

A GET request to /api/open/threat_intelligence allows you to list indicators created
by the user.

Requirements and Restrictions

1. An authenticated user must be in an admin role group or belong to a Threat
Intelligence group.

2. If the request is accepted, the result contains a Json array of contents with id,
name and type.

96 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Figure 48. Example of request

A DELETE request to /api/open/threat_intelligence allows you to remove
indicators.

Requirements and restrictions

1. An authenticated user must be in an admin role group or belong to a Threat
Intelligence group with the Allow configuration option switched to ON in the
group settings.

2. The Json content is represented as an array of contents that allows you to remove
more than one (1) indicator at a time

3. The type of content must be specified in the type parameter and the value must
be: packet_rules, yara_rules or stix_indicators.

4. The content id must be specified in the id parameter.
5. If the request is accepted, the result contains contents with id and type.
6. The request is rejected if the sensor is connected to a CMC.

Figure 49. Example of request

n2os-sdk v24.3.1 2024-09-09 97

3 - OpenAPI Software Development Kit

Sensors endpoint

A GET to /api/open/sensors/resources allows you to get cpu_perc, mem_used_perc
and disk_usage_perc resources.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role or be part of a
group with the health permission.

Figure 50. Example request

A GET to /api/open/sensors/license allows you to get the license information in the
sensor.

Requirements and Restrictions

1. The authenticated user must be in a group having admin role.

98 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 3 - OpenAPI

Figure 51. Example of user groups all request

n2os-sdk v24.3.1 2024-09-09 99

3 - OpenAPI Software Development Kit

Throttling policy

Overview
Throttling has been implemented in the HTTP OpenAPI to ensure fair usage and to
maintain system stability. When the rate limit is exceeded, the API responds with a 429
Too Many Requests status code along with the retry-after header indicating the
number of seconds the client should wait before retrying the request.

Rate limit
The rate limit for API requests is set to 60 requests per minute. If this limit is exceeded,
further requests within the same minute will be rejected with a 429 Too Many
Requests response.

Note:

The computation of the number of requests is not precise as the requests are

counted based on a 1 minute time window starting from the next minute. That

means that more than 60 requests might be needed to get the 429 - Too

Many Requests error.

Retry-after header
After receiving a 429 Too Many Requests response, clients should parse the retry-
after header to determine the waiting period before making another request. This
header indicates the number of seconds the client must wait before retrying the
request. Clients should respect this waiting period to avoid further throttling.

Impact
Throttling affects all endpoints exposed under the /api/open path. Clients making
requests to any of these endpoints should be aware of the throttling policy and handle
a 429 Too Many Requests response appropriately.

Example

HTTP/1.1 429 Too Many Requests

Content-Type: application/json

retry-after: 30

100 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

Chapter 4. Data model reference

n2os-sdk v24.3.1 2024-09-09 101

4 - Data model reference Software Development Kit

102 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

alerts

A list of alerts that Guardian raises.

id Primary key of this query source

type_id The Type ID represents a unique "class" of the Alert, that characterizes

what the Alert is about in a unique way

name Name of the type ID. It can be updated dynamically by the correlation

engine.

description More details about the alert

severity Syslog-like severity

mac_src Source MAC address

mac_dst Destination MAC address

ip_src Source IP address

ip_dst Destination IP address

risk Risk, between 0 and 10

protocol The protocol in which this entity has been observed

src_roles Roles of the source node

dst_roles Roles of the target node

time Time when the first packet triggers the alert; for incidents, it is the time

of the last correlated alert, which updates over time

ack True if the Alert has been acknowledged

id_src ID of the source node

id_dst ID of the destination node

synchronized True if this entity has been synchronized with the upper CMC or Vantage

zone_src Source zone

zone_dst Destination zone

appliance_id The id of the sensor where this entity has been observed

port_src Source port

n2os-sdk v24.3.1 2024-09-09 103

4 - Data model reference Software Development Kit

port_dst Destination port

label_src Label of the source node

label_dst Label of the destination node

trigger_id ID of the triggering engine entity

trigger_type Name of the trigger/engine

appliance_host The hostname of the sensor where this entity has been observed

appliance_ip The IP address of the sensor where this entity has been observed

transport_protocol Name of the transport protocol (e.g. tcp/udp/icmp...)

is_security True if the alert is a Cybersecurity alert. False otherwise (e.g. a network

monitoring one)

note User-defined note about the Alert

appliance_site Site name of the sensor where this alert has been generated

parents ID of parent incidents.

is_incident True if this Alert is an incident grouping more alerts

properties JSON with additional information for this alert

created_time Time when the alert record was created

incident_keys (Internal use)

bpf_filter BPF filter for the entity, used when performing traces for this entity

closed_time Time in epoch milliseconds when the alert has been closed. 0 if still

open.

status Status of the alert

session_id ID of the Session during which this alert was raised

replicated This is true if the record has been replicated on the replica machine

capture_device Name of the interface from which this entity has been detected

threat_name In case of known threat, this holds the threat name

type_name Name of the type ID. It is immutable.

104 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

sec_profile_visible True if the alert is visible according to the Security Profile. For alerts that

are part of incidents, the field value is set to True when at least one child

alert has the field value equal to True.

n2os-sdk v24.3.1 2024-09-09 105

4 - Data model reference Software Development Kit

appliances

This query source contains information about the sensors connected to the current
CMC or Guardian.

ip Last IP address of the sensor

last_sync Timestamp in epoch milliseconds when the last full sync

occurred

id Primary key of this query source

info JSON with miscellaneous information about the sensor

allowed True if the sensor is in allowed state, meaning that all its data

will be pushed its upstream sensor

sync_throughput Amount of throughput used for synchronization purposes

is_updating True if the sensor is currently applying a software update

map_position (Internal use)

previous_alerts_count_last_5m (Internal use)

version_locked True if the sensor has been version locked

site Site name this sensor belongs to

host Host name of the sensor

time Timestamp in epoch milliseconds when this entity was

created or updated

synchronized True if this entity has been synchronized with the upper

CMC or Vantage

replicated This is true if the record has been replicated on the replica

machine

deleted_at Time the entity was cancelled

health (Internal use)

appliance_id The id of the sensor where this entity has been observed

appliance_ip The IP address of the sensor where this entity has been

observed

106 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

appliance_host The hostname of the sensor where this entity has been

observed

force_update True if a force update has been issued to this sensor

model Model of the sensor

last_seen_packet Point in time in epoch milliseconds when a packet has been

captured by the sensor

has_same_version_of_cmc (Internal use)

is_cmc True if the sensor is a CMC

is_guardian True if the sensor is a Guardian

is_remote_collector True if the sensor is a Remote Collector

has_smart_polling True if the Smart Polling is available

n2os-sdk v24.3.1 2024-09-09 107

4 - Data model reference Software Development Kit

assertions

An assertion represents an automatic check against other query sources.

query The query that is run as basis of the assertion

result True if the assertion is satisfied, false if it is failing

name Name of the assertion

failed_since Time of since failure, in epoch milliseconds

id Primary key of this query source

can_send_alert True if the assertion will raise alerts

has_sent_alert True if the assertion has sent alerts in the past

bpf_filter BPF filter used to capture traffic on failure

failures_count Number of failures

time Timestamp in epoch milliseconds when this entity was created or

updated

alert_delay Delay in seconds before an alert is raised. Can be used as soft limit

to handle flipping-states situations.

can_request_trace True if a trace will be requested on failure

alert_risk Risk of raised alerts

is_security True if the assertion is a Cybersecurity assertion. False otherwise

(e.g. a network monitoring one)

group_id (Internal use)

note Note about the assertion

deleted_at Time the entity was cancelled

replicated This is true if the record has been replicated on the replica

machine

synchronized True if this entity has been synchronized with the upper CMC or

Vantage or Vantage

propagate_to_appliances (Internal use)

propagated (Internal use)

108 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

assets

Assets represent a local, physical system, and can be composed of one or more nodes.

name Name of the node (Note: This field is automatically assigned by

Guardian based on the most reliable available information, such as:

address, network qualified names, nodes' assigned labels, etc.)

level The purdue-model level of the asset

appliance_hosts The hostname(s) of the sensor(s) where this entity has been observed

capture_device Name of the interface from which this entity has been detected

ip IP address(es) of the asset. It can be either IPv4, IPv6 or empty (in case

of L2 node)

mac_address MAC address(es) of the asset. It can be missing in some situations

(serial nodes)

mac_address_level (for internal use)

vlan_id The virtual local area network (VLAN) ID(s) of the asset. It can be

absent if the traffic to/from the node is not VLAN-tagged

mac_vendor MAC address vendor(s). Is not empty when the MAC address is

present and the corresponding Vendor name is known

os Operating System of the asset, if available. This field is not present

when the firmware_version is available

roles The set of application-level roles of the asset. Differently from the type,

these are behaviors

vendor Vendor of the asset

vendor:info This is a metadata field about the vendor field

firmware_version The firmware version of the asset. The field is not present when the os

field is available

firmware_version:info This is a metadata field about the firmware_version field

os_or_firmware Since os and firmware cannot be present at the same time, this field

allow to get either of the two in a coalesce-like manner

serial_number The serial number of the asset

serial_number:info This is a metadata field about the serial_number field

n2os-sdk v24.3.1 2024-09-09 109

4 - Data model reference Software Development Kit

product_name The product name of the asset

product_name:info This is a metadata field about the product_name field

type The type of the asset

type:info This is a metadata field about the type field

protocols The unique protocols used from and to this asset

nodes The set of node id(s) that compose this asset

custom_fields Any additional custom field defined in the Custom fields

device_id (Internal use)

is_ai_enriched This field is true if this asset has been enriched by Asset Intelligence

110 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

asset_cves

View of Node Common Vulnerability and Exposures (CVE) grouped by CVE and asset.

asset_id The ID of the vulnerable asset

cve Common Vulnerabilities and Exposures (CVE) ID

cwe_id Vulnerability category ID

cwe_name Vulnerability category name

creation_time Timestamp for creation of the vulnerability

epss_score The EPSS score assigned to the CVE

id Primary key for this query source

is_kev Status of Known Exploited Vulnerability

latest_hotfix Latest and most complete hotfix to install to solve the related CVE (only

relevant for Microsoft Windows assets)

likelihood Value between 0.1 and 1.0, where 1.0 represents the maximum likelihood

that the CVE is present

matching_cpes List of CPEs that lead to assigning the vulnerability to this node

minimum_hotfix Minimum hotfix to install to solve the related CVE (only relevant for

Microsoft Windows assets)

name Labels of the vulnerable nodes

nodes List of vulnerable nodes belonging to the same asset

references List of references to external websites providing extra information about

the vulnerability

resolved Whether or not the vulnerability has been resolved by an installed patch

(only relevant for Microsoft Windows assets)

score CVSS (Common Vulnerability Scoring System) score assigned to this CVE

source Entity that provided the original information about the vulnerability

summary Description of the vulnerability

time Timestamp (in epoch milliseconds) at which the vulnerability has been

found on the network node in the user's environment

n2os-sdk v24.3.1 2024-09-09 111

4 - Data model reference Software Development Kit

update_time Timestamp for when this vulnerability was last updated

112 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

captured_logs

Logs captured passively over the network.

id Primary key of this query source

time Timestamp in epoch milliseconds when this entity was created or updated

appliance_id The id of the sensor where this entity has been observed

appliance_ip The IP address of the sensor where this entity has been observed

appliance_host The hostname of the sensor where this entity has been observed

synchronized True if this entity has been synchronized with the upper CMC or Vantage

id_src Source id of the packet where the log was captured

id_dst Destination id of the packet where the log was captured

protocol The protocol in which this entity has been observed

log Log contents

replicated This is true if the record has been replicated on the replica machine

sync_time Timestamp in epoch milliseconds when the event was synchronized

n2os-sdk v24.3.1 2024-09-09 113

4 - Data model reference Software Development Kit

captured_urls

URLs and other protocol calls found in the network. Access to files, requests to DNS,
requested URLs and others are available in this query source.

id Primary key of this query source

id_src Source id of the packet where the URL was captured

id_dst Destination id of the packet where the URL was captured

protocol The protocol in which this entity has been observed

time Timestamp in epoch milliseconds when this entity was created or updated

url Captured URL

operation Operation performed to access the URL

username Username that performed the activity

size_bytes Size in bytes transferred when accessing the URL

session_id ID of the Session during which this URL was captured

properties JSON with additional information captured with this event

114 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

function_codes

Function codes used in the environment.

id Primary key of this query source

protocol The protocol in which this entity has been observed

fc The symbolic function code

count How many times this function code has been used since restart of the system

description The description of the function code

n2os-sdk v24.3.1 2024-09-09 115

4 - Data model reference Software Development Kit

health_log

Health-related events about the system - like high resource utilization or hardware-
related issues or events.

id Primary key of this query source

time Timestamp in epoch milliseconds when this entity was created or updated

appliance_id The id of the sensor where this entity has been observed

appliance_ip The IP address of the sensor where this entity has been observed

appliance_host The hostname of the sensor where this entity has been observed

synchronized True if this entity has been synchronized with the upper CMC or Vantage

info JSON with the information captured with about the event

replicated This is true if the record has been replicated on the replica machine

116 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

link_events

Events that can occur on a link, including being available or not.

id_src Source node id

id_dst Destination node id

protocol The protocol in which this entity has been observed

event Payload of the event

id Primary key of this query source

port_src Source port

port_dst Destination port

time Timestamp in epoch milliseconds when the event was created

session_id ID of the Session during which this URL was captured

transport_protocol Transport protocol used by the traffic generating this event

params JSON with additional information captured with this event

n2os-sdk v24.3.1 2024-09-09 117

4 - Data model reference Software Development Kit

links

Links are protocol relations between two nodes with a specific protocol. They model
the interaction between nodes.

from Client node of the link

to Server node of the link

is_from_public True if client node is not a local node but an

outside, public IP.

is_to_public True if server node is not a local but an outside,

public IP.

from_zone Zone of the client node of the link

to_zone Zone of the server node of the link

protocol The protocol in which this entity has been observed

first_activity_time Timestamp in epoch milliseconds when this a

packet was sent on this link for the first time

last_activity_time Timestamp in epoch milliseconds when this a

packet was sent on this link for the last time

last_handshake_time Timestamp in epoch milliseconds when the last

TCP handshake has occurred on this link

transport_protocols Set of transport protocols observed for this link

tcp_handshaked_connections.total Total amount of TCP handshaked connections

tcp_handshaked_connections.last_5m Amount of TCP handshaked connections in the last

5 minutes

tcp_handshaked_connections.last_15m Amount of TCP handshaked connections in the last

15 minutes

tcp_handshaked_connections.last_30m Amount of TCP handshaked connections in the last

30 minutes

tcp_connection_attempts.total Total amount of bytes for TCP SYN packets

tcp_connection_attempts.last_5m Amount of TCP SYN packets in the last 5 minutes

tcp_connection_attempts.last_15m Amount of TCP SYN packets in the last 15 minutes

118 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

tcp_connection_attempts.last_30m Amount of TCP SYN packets in the last 30 minutes

transferred.packets Total number of packets transmitted

transferred.bytes Total number of bytes transmitted

transferred.last_5m_bytes Number of bytes transmitted in the last 5 minutes

transferred.last_15m_bytes Number of bytes transmitted in the last 15 minutes

transferred.last_30m_bytes Number of bytes transmitted in the last 30 minutes

transferred.smallest_packet_bytes Smallest packet size in bytes observed

transferred.biggest_packet_bytes Biggest packet size in bytes observed

transferred.avg_packet_bytes Average packet size in bytes observed

tcp_retransmission.percent Percentage of TCP packets that have been

retransmitted

tcp_retransmission.packets Total number of TCP packets that have been

retransmitted

tcp_retransmission.bytes Total amount of bytes for TCP packets that have

been retransmitted

tcp_retransmission.last_5m_bytes Amount of bytes of TCP packets that have been

retransmitted in the last 5 minutes

tcp_retransmission.last_15m_bytes Amount of bytes of TCP packets that have been

retransmitted in the last 15 minutes

tcp_retransmission.last_30m_bytes Amount of bytes of TCP packets that have been

retransmitted in the last 30 minutes

throughput_speed Live throughput for the entity

is_learned This is true for links that were observed during the

learning phase

is_fully_learned This is true for links that were observed also during

the learning phase and which properties are not

changed since then

is_broadcast True if this is not a real node but a broadcast or

multicast entry

n2os-sdk v24.3.1 2024-09-09 119

4 - Data model reference Software Development Kit

has_confirmed_data True if data has been exchanged in both directions,

or more genererically if the data is really flowing

and is not a likely scan or alike

alerts The number of alerts being created around this link

last_trace_request_time Last time in epoch milliseconds that a trace has

been asked on the link

active_checks List of active real-time checks on the entity

function_codes Set of function codes seen on this link

bpf_filter BPF filter for the entity, used when performing

traces for this entity

120 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

node_cpe_changes

When a Common Platform Enumeration (CPE) updates, it creates an entry in this
query source to track software updates or to detect software.

id Primary key of this query source

node_id The id of the node this CPE refers to

cpe The old full CPE

cpe_part The old part piece of the CPE

cpe_vendor The old vendor piece of the CPE

cpe_product The old product piece of the CPE

cpe_version The old version piece of the CPE

cpe_update The old update piece of the CPE

new_cpe The CPE that has replaced the old one

new_cpe_vendor The CPE vendor that has replaced the old one

new_cpe_product The CPE product that has replaced the old one

new_cpe_version The CPE version that has replaced the old one

new_cpe_update The CPE update that has replaced the old one

node_cpe_id The ID of the Node CPE id (node_cpe query source) entity to

which this change event relates to

time Timestamp in epoch milliseconds when this entity was created

or updated

synchronized True if this entity has been synchronized with the upper CMC or

Vantage

appliance_id The id of the sensor where this entity has been observed

appliance_ip The IP address of the sensor where this entity has been observed

appliance_host The hostname of the sensor where this entity has been observed

human_cpe_vendor The old human-readable version of the CPE vendor

human_cpe_product The old human-readable version of the CPE product

n2os-sdk v24.3.1 2024-09-09 121

4 - Data model reference Software Development Kit

new_human_cpe_vendor The new human-readable version of the CPE vendor

new_human_cpe_product The new human-readable version of the CPE product

human_cpe_version The old human-readable version of the CPE version

human_cpe_update The old human-readable version of the CPE update

new_human_cpe_version The new human-readable version of the CPE version

new_human_cpe_update The new human-readable version of the CPE update

likelihood A value between 0.1 and 1.0 where 1.0 represents the maximum

likelihood of the CPE to be real. This is the old value.

new_likelihood A value between 0.1 and 1.0 where 1.0 represents the maximum

likelihood of the CPE to be real. This is the new value.

replicated This is true if the record has been replicated on the replica

machine

cpe_edition The old edition piece of the CPE

new_cpe_edition The new edition piece of the CPE

human_cpe_edition The old human-readable version of the CPE edition

new_human_cpe_edition The new human-readable version of the CPE edition

122 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

node_cpes

Lists Common Platform Enumerations (CPEs), that is software or components
connected to a specific node in the system.

id Primary key of this query source

node_id The id of the node this CPE refers to

cpe The full CPE

cpe_part The part piece of the CPE

cpe_vendor The vendor piece of the CPE

cpe_product The product piece of the CPE

cpe_version The version piece of the CPE

cpe_update The update piece of the CPE

time Timestamp in epoch milliseconds when this entity was created or

updated

synchronized True if this entity has been synchronized with the upper CMC or

Vantage

appliance_id The id of the sensor where this entity has been observed

appliance_ip The IP address of the sensor where this entity has been observed

appliance_host The hostname of the sensor where this entity has been observed

updated This is true if the record has been processed. When false, the value of

the record must not be used.

cpe_translator Name of the CPE translator that produced this CPE. For diagnostic

purposes only.

human_cpe_vendor The human-readable version of the CPE vendor

human_cpe_product The human-readable version of the CPE product

human_cpe_version The human-readable version of the CPE version

human_cpe_update The human-readable version of the CPE update

likelihood A value between 0.1 and 1.0 where 1.0 represents the maximum

likelihood of the CPE to be real

n2os-sdk v24.3.1 2024-09-09 123

4 - Data model reference Software Development Kit

replicated This is true if the record has been replicated on the replica machine

cpe_edition The edition piece of the CPE

human_cpe_edition The human-readable version of the CPE edition

124 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

node_cves

Vulnerabilities are matched against current CVEs.

id Primary key for this query source

time Timestamp (in epoch milliseconds) at which the vulnerability has

been found on the network node in the user's environment

appliance_host Host name of the Nozomi Networks sensor where the CVE entry

is hosted

appliance_id ID of the Nozomi Networks sensor where the CVE entry is hosted

appliance_ip IP address of the Nozomi Networks sensor where the CVE entry

is hosted

cve CVE ID

cve_creation_time Timestamp for creation of the vulnerability

cve_references List of references to external websites providing extra

information about the vulnerability

cve_score CVSS (Common Vulnerability Scoring System) score assigned to

this CVE

cve_source Entity that provided the original information about the

vulnerability

cve_summary Description of the vulnerability

cve_update_time Timestamp for when this vulnerability was last updated

cwe_id Vulnerability category ID

cwe_name Vulnerability category name

installed_on (For internal use)

node_label Label of the vulnerable node

node_type Type of the vulnerable node

node_vendor Vendor of the vulnerable node

node_product_name Product name of the vulnerable node

node_os Operating system of the vulnerable node

n2os-sdk v24.3.1 2024-09-09 125

4 - Data model reference Software Development Kit

node_firmware_version Firmware version of the vulnerable node

node_id Node ID for the referenced CVE

asset_id ID of the vulnerable asset

zone Network zone to which the vulnerable node belongs

likelihood Value between 0.1 and 1.0, where 1.0 represents the maximum

likelihood that the CVE is present

matching_cpes List of CPEs that lead to assigning the vulnerability to this node

resolved Whether or not the vulnerability has been resolved by an

installed patch (only relevant for Microsoft Windows assets)

resolution_reason Specifies the possible resolution reason for a vulnerability

resolved_source Specifies the data source from which the resolution status’

related information could be retrieved (only relevant for Microsoft

Windows assets)

latest_hotfix Latest and most complete hotfix to install to solve the related

CVE (only relevant for Microsoft Windows assets)

minimum_hotfix Minimum hotfix to install to solve the related CVE (only relevant

for Microsoft Windows assets)

126 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

node_points

Data points are polled via Smart Polling from monitored nodes.

id Primary key of this query source

node_id The id of the node this point refers to

strategy The strategy used to retrieve this point

time Timestamp in epoch milliseconds when this entity was created or updated

name The name of the point

value (Deprecated) See content below

value_type The type of the point

human_name The human name of the point

content The actual content of the polled information

n2os-sdk v24.3.1 2024-09-09 127

4 - Data model reference Software Development Kit

nodes

A list of nodes, where a node is an L2 or L3 or other entity able to speak some protocol.

appliance_host The hostname of the sensor where this entity has been

observed

label Name of the node

id Primary key of this query source

ip IP address of the node. It can be either IPv4, IPv6 or

empty (in case of L2 node)

mac_address MAC address of the node. It can be missing in some

situations (serial nodes)

128 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

mac_address:info This is a metadata field about the mac_address field.

• protocol_source - is the cause of the latest
mac_address:info change

• likelihood - a value between 0.1 and 1.0 where 1.0
represents the maximum likelihood that the MAC
address is the native one from the node.

• likelihood_level - level of confidence regarding
whether the MAC address is the native one from
the node, or it is one routed/substituted by the
network. Values:

◦ unconfirmed (no information is available)
◦ likely (some information indicates it can be

native)
◦ confirmed (it is definitely native)

• source - indicates where the information comes
from:

◦ manual: information that is manually
added from the configuration

◦ import: imported information
◦ passive: information from Deep Packet

Inspection
◦ asset-kb: information from Asset

Intelligence
◦ smart-polling: information from Smart

Polling

• granularity - is the level of detail of the
information. Values:

◦ manual-or-import: information manually
added or imported

◦ complete: detailed information has been
extracted.

◦ partial: detailed, but still not complete.
◦ generic: a family/generic value has been

found, but is not detailed.
◦ unknown

• confidence - measures the confidence that the
information is the one published. Values:

◦ manual-or-import: information manually
added or imported, therefore the highest
confidence

◦ high
◦ good
◦ low
◦ unknown

n2os-sdk v24.3.1 2024-09-09 129

4 - Data model reference Software Development Kit

mac_vendor MAC address vendor. Is not empty when the MAC

address is present and the corresponding Vendor name

is known.

subnet The subnet to which this node belongs, if any.

vlan_id The VLAN ID of the node. It can be absent if the traffic

to/from the node is not VLAN-tagged.

vlan_id:info This is a metadata field about the vlan_id field.

zone The zone name to which this node belongs to

level The purdue-model level of the node

type The type of the node

type:info This is a metadata field about the type field.

os Operating System of the node, if available. This field is

not present when the firmware_version is available.

vendor Vendor of the node

vendor:info This is a metadata field about the vendor field.

product_name The product name of the node

product_name:info This is a metadata field about the product_name field.

firmware_version The firmware version of the node. The field is not

present when the os field is available.

firmware_version:info This is a metadata field about the firmware_version field.

serial_number The serial number of the node

serial_number:info This is a metadata field about the serial_number field.

is_broadcast True if this is not a real node but a broadcast or

multicast entry

is_public True if this not a local node but an outside, public IP

address.

reputation This can be good or bad depending on information

coming from STIX indicators

130 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

is_confirmed This is true for nodes that are confirmed to exist. Non-

existing targets of port scans for instance are not

confirmed

is_compromised This is true for nodes that have been recognised as

compromised according to threat indicators

is_learned This is true for nodes that were observed during the

learning phase

is_fully_learned This is true for nodes that were observed also during the

learning phase and which properties are not changed

since then

is_disabled This is true for nodes that are hidden from graphs

because too noisy

roles The set of application-level roles of the node. Differently

from the type, these are behaviors.

links The set of links to which this node is related

links_count The total number of links from and to this node

protocols The unique protocols used from and to this node

created_at Timestamp in epoch milliseconds when this node was

first observed

first_activity_time Timestamp in epoch milliseconds when this node send

a packet for the first time

last_activity_time Timestamp in epoch milliseconds when this node send

a packet for the last time

received.packets Total number of packets received

received.bytes Total number of bytes received

received.last_5m_bytes Number of bytes received in the last 5 minutes

received.last_15m_bytes Number of bytes received in the last 15 minutes

received.last_30m_bytes Number of bytes received in the last 30 minutes

sent.packets Total number of packets sent

sent.bytes Total number of bytes sent

n2os-sdk v24.3.1 2024-09-09 131

4 - Data model reference Software Development Kit

sent.last_5m_bytes Number of bytes sent in the last 5 minutes

sent.last_15m_bytes Number of bytes sent in the last 15 minutes

sent.last_30m_bytes Number of bytes sent in the last 30 minutes

tcp_retransmission.percent Percentage of TCP packets that have been

retransmitted

tcp_retransmission.packets Total number of TCP packets that have been

retransmitted

tcp_retransmission.bytes Total amount of bytes for TCP packets that have been

retransmitted

tcp_retransmission.last_5m_bytes Amount of bytes of TCP packets that have been

retransmitted in the last 5 minutes

tcp_retransmission.last_15m_bytes Amount of bytes of TCP packets that have been

retransmitted in the last 15 minutes

tcp_retransmission.last_30m_bytes Amount of bytes of TCP packets that have been

retransmitted in the last 30 minutes

variables_count Amount of variables attached to the node

device_id (Internal use)

properties Additional properties found by several protocols

attached to the node

custom_fields Any additional custom field defined in the Custom fields

bpf_filter BPF filter for the node, used when performing traces for

this node and as building block for link traces too

device_modules Set of modules of this devices, if any

capture_device Name of the interface from which this entity has been

detected

132 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

report_files

Generated reports available for consultation.

id Primary key of this query source

name Name of the report file

create_file_at Time the report was created

deleted_at Time the entity was cancelled

time Timestamp in epoch milliseconds when this entity was created or updated

appliance_id The id of the sensor where this entity has been observed

appliance_ip The IP address of the sensor where this entity has been observed

appliance_host The hostname of the sensor where this entity has been observed

synchronized True if this entity has been synchronized with the upper CMC or Vantage

replicated This is true if the record has been replicated on the replica machine

created_by User that generated the report

user_groups User groups allowed to see the report

file_type Type of file generated

n2os-sdk v24.3.1 2024-09-09 133

4 - Data model reference Software Development Kit

sessions_history

Archived sessions.

For more details, see the sessions query source.

id Primary key of this query source

status Tells if the session is ACTIVE, CLOSED, SYN, SYN-ACK

direction_is_known True if the session direction has been discovered. If false,

from and to may be swapped.

from Client node id

to Server node id

from_zone Client zone

to_zone Server zone

transport_protocol Transport protocol of the session

from_port Port on the client side

to_port Port on the server side

protocol The protocol in which this entity has been observed

vlan_id The VLAN ID of the session. It can be absent if the traffic

of the session is not VLAN-tagged.

transferred.packets Total number of packets transmitted

transferred.bytes Total number of bytes transmitted

transferred.last_5m_bytes Number of bytes transmitted in the last 5 minutes

transferred.last_15m_bytes Number of bytes transmitted in the last 15 minutes

transferred.last_30m_bytes Number of bytes transmitted in the last 30 minutes

transferred.smallest_packet_bytes Smallest packet size in bytes observed

transferred.biggest_packet_bytes Biggest packet size in bytes observed

transferred.avg_packet_bytes Average packet size in bytes observed

throughput_speed Live throughput for the session

134 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

first_activity_time Timestamp in epoch milliseconds when this session was

found for the first time

last_activity_time Timestamp in epoch milliseconds when this session was

detected for the last time

key (Internal use)

bpf_filter BPF filter for the entity, used when performing traces for

this entity

n2os-sdk v24.3.1 2024-09-09 135

4 - Data model reference Software Development Kit

sessions

Live, mostly open, sessions between nodes. A session is a specific application-level
connection between nodes. A link can hold one or more sessions at a given time.

id Primary key of this query source

status Tells if the session is ACTIVE, CLOSED, SYN, SYN-ACK

direction_is_known True if the session direction has been discovered. If false,

from and to may be swapped.

from Client node id

to Server node id

from_zone Client zone

to_zone Server zone

transport_protocol Transport protocol of the session

from_port Port on the client side

to_port Port on the server side

protocol The protocol in which this entity has been observed

vlan_id The VLAN ID of the session. It can be absent if the traffic

of the session is not VLAN-tagged.

transferred.packets Total number of packets transmitted

transferred.bytes Total number of bytes transmitted

transferred.last_5m_bytes Number of bytes transmitted in the last 5 minutes

transferred.last_15m_bytes Number of bytes transmitted in the last 15 minutes

transferred.last_30m_bytes Number of bytes transmitted in the last 30 minutes

transferred.smallest_packet_bytes Smallest packet size in bytes observed

transferred.biggest_packet_bytes Biggest packet size in bytes observed

transferred.avg_packet_bytes Average packet size in bytes observed

throughput_speed Live throughput for the entity

136 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

first_activity_time Timestamp in epoch milliseconds when this session was

found for the first time

last_activity_time Timestamp in epoch milliseconds when this session was

detected for the last time

key (Internal use)

bpf_filter BPF filter for the entity, used when performing traces for

this entity

n2os-sdk v24.3.1 2024-09-09 137

4 - Data model reference Software Development Kit

variable_history

History of values for variables, where history has been enabled.

id Primary key of this query source

var_key Variable identifier this historic value belongs to

value The captured value of the variable

datatype The type of the variable value

time Timestamp in epoch milliseconds when this entity was created or updated

quality_enum The quality values attached to the variable value

client_node The client node involved in the communication when observing the variable

function_code Function code used to access the variable

138 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 4 - Data model reference

variables

Variables extracted via DPI from the monitored system.

var_key The primary key of this data source

host The node to which this variable belongs to

host_label The label of the node to which this variable belongs to

namespace It is the identifier of the subsystem in the producer to which the

variable belongs. Also known as the RTU ID of the variable.

name The name of the variable, likely an identifier of the memory area

label The human-readable name of the variable

unit The unit for the value of the variable

scale The scale of the variable. By default it is 1.0, and can be

configured/changed with external information.

offset The offset of the variable. By default it is 0.0, and can be

configured/changed with external information.

type The type of the value of the variable.

is_numeric True if it represents a number

min_value The minimum observed value

max_value The maximum observed value

value The live, last observed value of the variable. Upon restart, this

value is unknown because it needs to reflect the real time status.

bit_value The live, last observed value of the variable, expressed in bits.

Upon restart, this value is unknown because it needs to reflect

the real time status.

last_value This is the last observed value, and is persisted on reboots

last_value_is_valid True if the last value is valid (has valid quality)

last_value_quality The quality of the last value

last_cause The cause of the last value

protocol The protocol in which this entity has been observed

n2os-sdk v24.3.1 2024-09-09 139

4 - Data model reference Software Development Kit

last_function_code_info The last value function code information

last_function_code The last value function code

first_activity_time Timestamp in epoch milliseconds when this variable was found

for the first time

last_range_change_time Timestamp in epoch milliseconds when this variable's range

changed

last_activity_time Timestamp in epoch milliseconds when this variable was

detected for the last time

last_update_time Timestamp in epoch milliseconds of the last valid quality

last_valid_quality_time Timestamp in epoch milliseconds of the last time quality was

valid

request_count The number of times this variable has been accessed

changes_count The number of times this variable has changed

latest_bit_change Indices of the flipped bits during the latest variable change

last_client The last node that accessed this variable (in read or write mode)

history_status Tells if the history is eanbled or not on this variable

active_checks List of active real-time checks on the entity

flow_status Tells the status of the flow, that is if the variable has a cyclic

behavior or not

flow_anomalies Reports anomalies in the flow, if any

flow_anomaly_in_progress Reports a flow anomaly is in progress or not

flow_hiccups_percent Shows the amount if hiccups in the flow

flow_stats.avg Shows the average access time

flow_stats.var Shows the variance of the access time

140 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 5 - Data integration best practices

Chapter 5. Data
integration best practices

n2os-sdk v24.3.1 2024-09-09 141

5 - Data integration best practices Software Development Kit

142 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 5 - Data integration best practices

OpenAPI data

API users
Nozomi Networks recommends the practice of creating a user specifically for
the purpose of OpenAPI access. This provides a straightforward demarcation of
responsibilities for auditing and tracing.

Best Practice: Create a user specifically to access OpenAPI.

Authentication

Each call to an OpenAPI method requires authentication. OpenAPI currently supports
basic authentication. For example, when using CURL, if you have a username and
password for your OpenAPI user, you would use the following header along with your
query:

-H "Authorization: Basic <AUTH_TOKEN>"

Where <AUTH_TOKEN> is the base64 encoding of Username:Password.

Note that the language and method of implementation (e.g. CURL vs. Java) dictates
how basic authentication is performed.

Note:

When you query OpenAPI for data, the -k –user Username:Password option

may be used for basic authentication.

Querying Nozomi Networks sensors
Data retrieved from the OpenAPI is done by calling the OpenAPI HTTP interface on
either a Guardian or CMC sensor.

The query endpoint is powerful and allows the integrator to manipulate data through
the use of queries. A full list of the available query data sources, commands, and
functions is available in the N2OS User Manual.

Simple query example
This query retrieves the nodes in the Nozomi Networks sensor:

curl -k -H “Authorization: Basic <AUTH_TOKEN>”

 https://<YourHost>/api/open/query/do?query=nodes

If there are two nodes; the results will be similar to this:

{

 "header": [

 All of the headers…

],

 "result": [

 { First Node data },

n2os-sdk v24.3.1 2024-09-09 143

5 - Data integration best practices Software Development Kit

 { Second Node data }

],

 "total": 2

}

Complex query example
Ensure that the complex query commands are properly uniform resource identifier
(URI) encoded. The following query retrieves the node count in the Nozomi Networks
sensor:

curl -k -H “Authorization: Basic <AUTH_TOKEN>”

 https://<YourHost>/api/open/query/do?query=nodes%20%7C%20count

Note that the original query text “nodes | count” has been URI encoded to nodes
%20%7C%20count.

Note that the language and method of implementation dictate how the URI encoding
is accomplished.

Uploading asset information to the Nozomi Networks sensor
Data can also be uploaded into Guardian or CMC via an upload or enhanced asset
information. This is referred to as importing in the OpenAPI.

The import endpoint is simple and allows the integrator to upload node data through
the use of import statements. The command list is available in the N2OS User Manual.

Note:

The credentials of the user performing the OpenAPI call to import data must be

in the admin group to upload information into a Nozomi Networks sensor.

Import example using CURL with a CSV file
Using a sample CSV file, assets.csv looks like this:

 ip,label,firmware_version,vendor,product_name,serial_number,mac_address

 192.168.1.60,CSV Uploaded Asset 1,1.2.2,ACME,ACME Product

 1,abcdefge,00:01:02:03:04:06

 192.168.1.61,CSV Uploaded Asset 2,1.2.2,ACME,ACME Product

 2,abcdefge,00:11:12:13:14:16

The following command will upload these assets into the Guardian or CMC:

curl -k -X POST https://<YourHost>/api/open/nodes/import -H

 "Authorization: Basic <AUTH_TOKEN>" -F file=@<PathTo>/assets.csv

144 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 5 - Data integration best practices

Import example using CURL with JSON file
Using a sample JSON file, assets.json looks like this:

{

 "nodes": [

 {

 "ip": "1.2.3.8",

 "label": "JSON_Uploaded_Asset_1",

 "mac_address": "00:00:00:11:11:11",

 "firmware_version": "1.2.3",

 "product_name": "ACME_PLC_2",

 "serial_number": "1-789A10-2",

 "vendor": "ACME"

 },

 {

 "ip": "1.2.3.3",

 "label": "JSON_Uploaded_Asset_2",

 "mac_address": "00:00:00:11:11:15",

 "firmware_version": "1.2.2",

 "product_name": "ACME_PLC_1",

 "serial_number": "1-789A10-6",

 "vendor": "ACME"

 }

]

}

Depending on your CURL implementation, the file may have to be submitted using -d
as in the example below.

The following command uploads these assets into the Guardian or CMC:

curl -k -X POST https://<YourHost>/api/open/nodes/import_from_json -H

"Authorization: Basic <AUTH_TOKEN>" -H "Content-Type: application/json" -d

{"nodes":[{"ip":"1.2.3.8","label":"JSON_Uploaded_Asset_1","mac_address":"00:00:00:11:11:1

1",

"firmware_version":"1.2.3","product_name":"ACME_PLC_2","serial_number":"1-789A10-2",

"vendor":"ACME"},{"ip":"1.2.3.3","label":"JSON_Uploaded_Asset_2",

"mac_address":"00:00:00:11:11:15","firmware_version":"1.2.2",

n2os-sdk v24.3.1 2024-09-09 145

5 - Data integration best practices Software Development Kit

"product_name":"ACME_PLC_1","serial_number":"1-789A10-6","vendor":"ACME"}]}

Import commands

Command HTTP Parameters Description

import_from_csv_file -F file=@</path/to/CSV_FILE> This command allows
the import of asset
information from
a CSV file. The CSV
file must have the
appropriate column
headers present in the
first line.

import_from_json -H 'Content-Type: application/json'

-d <JSON_DATA>

This command allows
the import of asset
information from JSON
data. Note that the
JSON data is specified
in the HTTP headers
directly.

Downloading traces
Traces associated with an alert can be downloaded via the API as well. You need
the alert ID in order to accomplish this. The following command downloads a trace
associated with an alert ID <YourAlertID> to the file specified by <YourTraceFile>:

curl -k -X GET https://<YourHost>/api/open/alerts/<YourAlertID>/trace -H

 "Authorization: Basic <AUTH_TOKEN>" -H "Content-Type: application/js on"

 --output <YourTraceFile>

146 n2os-sdk v24.3.1 2024-09-09

Software Development Kit 5 - Data integration best practices

Certify your integration with Nozomi Networks

If you would like your integration to be considered approved by Nozomi Networks
technical personnel, then you will need to submit several items describing your
integration with the Nozomi Networks platform. These include any marketing and
technical materials that you may have created.

In addition, you will be required to perform a live demonstration of your integration
with the Nozomi Networks platform.

To have your integration certified by Nozomi Networks we will require the following
items:

• When performing searches on messages, only search on message type IDs.

◦ This is especially important with regards to Alert Type ID’s.

• For CEF Syslog integrations, ensure that custom fields are mapped as necessary
for your environment.

◦ Nozomi Networks has custom string labels defined in our CEF
implementation.

• Please provide a configuration guide for integrating your product with the
Nozomi Networks Network platform.

• Please provide any relevant sales collateral you have produced (including solution
briefs, videos, etc.) for the integration with Nozomi Networks.

• Schedule a live demo of the integration. This should include a complete
walkthrough of the integration from initial configuration to events flowing from
the Nozomi Networks platform into your environment. Any Nozomi Networks
discovered discrepancies must be addressed prior to certification.

• Once Nozomi Networks technical personnel have approved the materials then
the integration will be considered completed. The integration will then be
granted Certified Technology Partner status.

Nozomi Networks certification checklist

1. When performing searches on Alert messages, only search on Alert type IDs.
2. For CEF Syslog integrations, ensure that custom fields are mapped as necessary

for your environment.
3. Please provide a configuration guide for integrating your product with the

Nozomi Networks Network platform.
4. Please provide any relevant sales collateral you have produced (including solution

briefs, videos, etc.) for the integration with Nozomi Networks.

n2os-sdk v24.3.1 2024-09-09 147

5 - Data integration best practices Software Development Kit

5. Schedule a live demo of the integration. This should include a complete
walkthrough of the integration from initial configuration to events flowing from
the Nozomi Networks platform into your environment.

6. Once Nozomi Networks technical personnel have approved the materials then
the integration will be considered completed. The integration will then be
granted Certified Technology Partner status.

148 n2os-sdk v24.3.1 2024-09-09

Software Development Kit Glossary

Glossary

n2os-sdk v24.3.1 2024-09-09 149

Glossary Software Development Kit

150 n2os-sdk v24.3.1 2024-09-09

Software Development Kit Glossary

Application
Programming Interface

An API is a software
interface that lets two or
more computer programs
communicate with each
other.

Berkeley Packet Filter

The BPF is a technology that
is used in some computer
operating systems for
programs that need to
analyze network traffic. A BPF
provides a raw interface to
data link layers, permitting
raw link-layer packets to be
sent and received.

Central Management
Console

The Central Management
Console (CMC) is a Nozomi
Networks product that has
been designed to support
complex deployments that
cannot be addressed with
a single sensor. A central
design principle behind
the CMC is the unified
experience, that lets you
access information in the
similar method to the sensor.

Command-line interface

A command-line processor
uses a command-line
interface (CLI) as text input
commands. It lets you invoke
executables and provide
information for the actions
that you want them to do. It
also lets you set parameters
for the environment.

Comma-separated Value

A CSV file is a text file that
uses a comma to separate
values.

Common Platform
Enumeration

CPE is a structured naming
scheme for information
technology (IT) systems,
software, and packages.
CPE is based on the generic
syntax for Uniform Resource
Identifiers (URI) and includes
a formal name format,
a method for checking
names against a system,
and a description format for
binding text and tests to a
name.

Common Vulnerabilities
and Exposures

CVEs give a reference
method information-security
vulnerabilities and exposures
that are known to the public.
The United States' National
Cybersecurity FFRDC
maintains the system.

Hypertext Transfer
Protocol

HTTP is an application
layer protocol in the
Internet protocol suite
model for distributed,
collaborative, hypermedia
information systems. HTTP
is the foundation of data
communication for the
World Wide Web, where
hypertext documents include
hyperlinks to other resources
that the user can easily
access, for example by a
mouse click or by tapping the
screen in a web browser.

Identifier

A label that identifies the
related item.

Internet Protocol

An Internet Protocol address,
or IP address, identifies a
node in a computer network
that uses the Internet
Protocol to communicate.
The IP label is numerical.

Intrusion Detection
System

An intrusion detection
system (IDS), which can also
be known as an intrusion
prevention system (IPS) is
a software application, or
a device, that monitors a
computer network, or system,
for malicious activity or policy
violations. Such intrusion
activities, or violations, are
typically reported either
to a system administrator,
or collected centrally by a
security information and
event management (SIEM)
system.

JavaScript Object
Notation

JSON is an open standard file
format for data interchange.
It uses human-readable text
to store and transmit data
objects, which consist of
attribute–value pairs and
arrays.

JSON web token

A JWT is an internet standard
to create data with optional
encryption and/or optional
signature whose payload
holds JSON that asserts some
number of claims. The tokens
are signed either using a
private secret or a private/
public key.

Lua

Lua is a lightweight, high-
level programming language
designed for embedded use
in applications, known for
its simple syntax, efficiency,
and its extensive use in game
development.

n2os-sdk v24.3.1 2024-09-09 151

Glossary Software Development Kit

Media Access Control

A MAC address is a unique
identifier for a network
interface controller (NIC).
It is used as a network
address in network segment
communications. A common
use is in most IEEE 802
networking technologies,
such as Bluetooth, Ethernet,
and Wi-Fi. MAC addresses are
most commonly assigned by
device manufacturers and are
also referred to as a hardware
address, or physical address.
A MAC address normally
includes a manufacturer's
organizationally unique
identifier (OUI). It can be
stored in hardware, such as
the card's read-only memory,
or by a firmware mechanism.

Packet Capture

A pcap is an application
programming interface (API)
that captures live network
packet data from the OSI
model (layers 2-7).

Remote Terminal Unit

An RTU is a microprocessor-
controlled electronic
device that acts as an
interface between a SCADA
(supervisory control and
data acquisition) system, or
distributed control system, to
a physical object. It transmits
telemetry data to a master
system, and uses messages
from the master supervisory
system to control connected
objects.

Secure Shell

A cryptographic network
protocol that let you operate
network services securely
over an unsecured network.
It is commonly used for
command-line execution and
remote login applications.

Transmission Control
Protocol

One of the main protocols of
the Internet protocol suite.

Uniform Resource
Identifier

A URI is a unique string of
characters used to identify a
logical or physical resource on
the internet or local network.

Uniform Resource
Locator

An URL is a reference to
a resource on the web
that gives its location on a
computer network and a
mechanism to retrieving it.

User Interface

An interface that lets humans
interact with machines.

Virtual Local Area
Network

A VLAN is a broadcast
domain that is isolated and
partitioned in a computer
network at the data link layer
(OSI layer 2).

152 n2os-sdk v24.3.1 2024-09-09

	N2OS
	Contents
	Chapter 1. Scriptable protocols
	Architecture
	Standalone protocols
	Extensions
	Safe restarts

	Setup
	Explicit configuration
	Custom user contents

	Script parameters
	Configuration line
	Embedded as script comments
	Supported parameters

	Writing a standalone scriptable protocol
	Writing an extension scriptable protocol
	API reference
	Available Lua libraries
	Data types
	Functions

	Chapter 2. Scriptable variables
	Setup
	Writing a variables correlation script
	API reference
	Available Lua libraries
	Data types
	Functions

	Chapter 3. OpenAPI
	OpenAPI
	Setup
	Errors
	Query endpoint
	Use time filter for ordering and filtering
	Handling page 1000 number limit
	Select only relevant fields
	Limit items per page

	CLI endpoint
	Import CSV endpoint
	Import JSON endpoint
	Alerts endpoint
	Trace endpoint
	Filter traces
	BPF filter

	Users endpoint
	PCAPs endpoint
	Reports endpoint
	Report templates endpoint
	Quarantine endpoint
	Threat intelligence
	Sensors endpoint
	Throttling policy
	Overview
	Rate limit
	Retry-after header
	Impact
	Example

	Chapter 4. Data model reference
	alerts
	appliances
	assertions
	assets
	asset_cves
	captured_logs
	captured_urls
	function_codes
	health_log
	link_events
	links
	node_cpe_changes
	node_cpes
	node_cves
	node_points
	nodes
	report_files
	sessions_history
	sessions
	variable_history
	variables

	Chapter 5. Data integration best practices
	OpenAPI data
	API users
	Querying Nozomi Networks sensors
	Simple query example
	Complex query example
	Uploading asset information to the Nozomi Networks sensor
	Import example using CURL with a CSV file
	Import example using CURL with JSON file
	Import commands
	Downloading traces

	Certify your integration with Nozomi Networks
	Nozomi Networks certification checklist

	Glossary

